Posts Tagged ‘lagrangian’

The Arrow of Time and Misuse of Statistics

June 5, 2016

As an amateur physicist I try to avoid disputing established science, but one place I believe science has it wrong is the dimensionality of time.  If you read this blog at all, you’ll see I am trying to create a self-consistent world-view that conforms with peer-reviewed science.  My world-view attempts to add analysis and conclusions on some of the unanswered questions about our universe such as why are there so many elementary particles or how can quantum entanglement work.  I try never to dispute established science and to accept that my world-view is a belief system, not fact that must be forced on others–that is the mark of a crackpot that has just enough knowledge to waste other peoples’ time.

However, one place I break my rules of good behavior is this concept that time is one-dimensional.  For a long time, I’ve recoiled at the notion that the observer’s timeline could physically intersect a particular local spacetime neighborhood of an object event  multiple times.  I discussed this in a previous post, but now I want to discuss this disagreement from another angle–the claim for an existence of an Arrow of Time.

The Arrow of Time is a concept that describes the apparent one way nature of the evolution of a system of objects.  We see a dropped wine glass shatter on the floor,  but we never see a shattered wine glass re-assemble itself and rise up back onto a table.  We record a memory of events in the past, but never see an imprint of the future on our brain memory cells.  This directional evolution of systems is a question mark given that the math unambiguously allows evolution in either direction.  To put it in LaGrange equation of motion terms, the minimum energy path of an object such as a particle or a field element is one dimensional and there are two possible ways to traverse it.  The fundamental question is–why is one way chosen and not the other?

The standard answer is to invoke statistics in the form of the Laws of Thermodynamics, and I have always felt that was not the right answer.  Here is why I have trouble with that–statistics are mathematical derivations for the probability something will happen, and cannot provide a force that makes a particle go one way or the other on a *particular* LaGrangian minimum energy path.  It’s a misuse of statistics to use the thermodynamics laws to define what happens here.  In the case of the shattered wine glass, there are vastly more combinations of paths (and thus far higher probability) for the glass pieces to stay on the floor than there are for the glass shards to reassemble themselves–but that is not why they stay there!

The problem with the Arrow of Time interpretation comes from thinking the math gives us an extra degree of freedom that isn’t really there.  The minimum energy path can truly be traversed in either the time-forward or time-backward path, but it is an illusion to think both are possible.  Any system where information cannot be lost will be mathematically symmetric in time, creating the illusion of an actual path in time if only the observer were in the right place to observe the entirety of that path.  Einstein developed the equations of special relativity that were the epitomy of the path illusion by creating the concept of spacetime.  Does that mean the equations are wrong?  Of course not–but it exemplifies the danger of using the math to create an interpretation.  Just because the math allows it does not mean that the Arrow of Time exists–any relativistic system where information cannot be destroyed will allow the illusion of a directionality of time.

So what really is going on?  I’ll save that for a later post, but in my world-view, time is a property of the objects in the system.  There is only ONE copy of our existence, it is the one we are in right now, and visits to previous existences is simply not possible.  Our system evolves over time and previous existences no longer exist to visit.   Relativity does mean that time between events has to be carefully analyzed, but it does not imply its dimensionality.

Agemoz

Noncausal solution, Lorentz Geometry, and trying a LaGrangian solution to deriving inertia

December 31, 2012

Happy New Year with wishes for peace and prosperity to all!

I had worked out the group wave concept for explaining non-causal quantum interactions, and realized how logical it seems–we are so used to thinking about the speed of light limit causing causal behavior that it makes the non-causal quantum interactions seem mysterious.  But when thinking of a universe that spontaneously developed from nothing, non-causal (infinite speed) interactions should be the default, what is weird is why particles and fields are restricted to the speed of light.  That’s why I came up with the group wave construct for entities–a Fourier composition of infinite speed waves explains instant quantum interference, but to get an entity such as a particle to move, there is a restriction on how fast the wave can change phase.  Where does that limitation come from?  Don’t know at this point, but with that limitation, the non-causal paradox is resolved.

Another unrelated realization occurred to me when I saw some derivation work that made the common unit setting of c to 1.  This is legal, and simplifies viewing derivations since relativistic interactions now do not have c carried around everywhere.  For example, beta in the Lorentz transforms now becomes Sqrt(1 – v^2) rather than Sqrt(1 – (v^2/c^2)).  As long as the units match, there’s no harm in doing this from a derivation standpoint, you’ll still get right answers–but I realized that doing so will hide the geometry of Lorentz transforms.  Any loop undergoing a relativistic transform to another frame of reference will transform by Sqrt(1 – (v^2/c^2)) by geometry, but a researcher would maybe miss this if they saw the transform as Sqrt(1 – v^2).   You can see the geometry if you assume an electron is a ring with orientation of the ring axis in the direction of travel.  The ring becomes a cylindrical spiral–unroll one cycle of the spiral and the pythagorean relation Sqrt(1 – v^2/c^2)) will appear.  I was able to show this is true for any orientation, and hand-waved my way to generalizing to any closed loop other than a ring.  The Lorentz transforms have a geometrical basis if (and that’s a big if that forms the basis of my unitary twist field theory) particles have a loop structure.

Then I started in on trying to derive general relativity.  Ha Ha, you are all laughing–hey, The Impossible Dream is my theme song!  But anyway, here’s what I am doing–if particles can be represented by loops, then there should be an explanation for the inertial behavior of such loops (totally ignoring the Higgs particle and the Standard Model for right now).  I see a way to derive the inertial behavior of a particle where a potential field has been applied.  A loop will have a path through the potential field that will get distorted.  The energy of the distortion will induce a corrective effect that is likely to be proportional to the momentum of the particle.  If  I can show this to be true, then I will have derived the inertial behavior of the particle from the main principle of the unitary twist field theory.

My first approach was to attempt a Lagrangian mechanics solution.  Lagrange’s equation takes the difference of the kinetic energy from the potential energy and creates a time and space dependent differential equation that can be solved for the time dependent motion of the particle.  It works for single body problems quickly and easily, but this is a multiple body problem with electrostatic and magnetic forces.  My limited computation skills rapidly showed an unworkable equation for solution.  Now I’m chewing on what simplifications could be done that would allow determining the acceleration of the particle from the applied potential.

Agemoz