Posts Tagged ‘noncausal’

Basis Field For Particles

July 16, 2016

I think every physicist, whether real or amateur or crackpot, goes through the exercise of trying to work out a geometry for the field that particles reside in.  This is the heart of many issues, such as why is there a particle zoo and how to reconcile quantum theory with relativity, either special or general.  There are many ways to approach this question–experimental observation, mathematical derivation/generalization, geometrical inference, random guessing–all followed by some attempt to verify any resulting hypothesis. I’ve attempted to do some geometrical inference to work out some ideas as to what this field would have to be.

Ideas are a dime-a-dozen, so throwing something out there and expecting the world to take notice isn’t going to accomplish anything.  It’s primarily the verification phase that should advance the block of knowledge we call science.  This verification phase can be experimental observation such as from a collider, mathematical derivation or proof, or possibly a thorough computer simulation.  This system of growing our knowledge has a drawback–absolute refusal to accept speculative ideas which are difficult or impossible to verify (for example, in journals) can lock out progress and inhibit innovation.  Science investigation can get hide-bound, that is stuck in a loop where an idea has to have ultimate proof, but ultimate proof has become impossible, so no progress is made.

This is where the courageous amateur has some value to science, I think–they can investigate speculative possibilities–innovate–and disseminate the investigation via something like a blog that nobody reads.  The hope is that pursuing speculative ideas will eventually reach a conclusion or path for experimental observation that verifies the original hypothesis.  Unlike professional scientists, there are no constraints on how stupid or uninformed the amateur scientist is and no documentation or credentials that says that science can trust him.  The signal-to-noise is going to be so high that it’s not worth the effort to understand or verify the amateur.  The net result is that no progress in our knowledge base occurs–professional scientists are stuck as publishable ideas and proof/verification become more and more difficult to achieve, but no one wants to bother with the guesses of an amateur.  I think the only way out is for an amateur to use his freedom to explore and publish as conscientiously as he can, and for professionals to occasionally scan amateur efforts for possible diamonds in the rough.

OK, back to the title concept.  I’ve been doing a lot of thinking on the field of our existence.  I posted previously that a non-compressible field yields a Maxwell’s equation environment which must have three spatial dimensions, and that time is a property, not a field dimension as implied by special relativity.  I’ve done a lot more thinking to try to pin down more details.  My constraints are driven primarily by the assumption that this field arose from nothing (no guiding intelligence), which is another way of saying that there cannot be a pre-existing rule or geometry.  In other words, to use a famous aphorism, it cannot be turtles all the way down–the first turtle must have arisen from nothing.

I see some intermediate turtles–an incompressible field would form twist relations that Maxwell’s equations describe, and would also force the emergence of three spatial dimensions.  But this thinking runs into the parity problem–why does the twist obey the right hand rule and not the left hand rule?  There’s a symmetry breaking happening here that would require the field to have a symmetric partner that we don’t observe.  I dont really want to complexify the field, for example to give it two layers to explain this symmetry breaking because that violates, or at least, goes in the wrong direction, of assuming a something emerged from nothing.

So, to help get a handle on what this field would have to be, I’ve done some digging in to the constraints this field would have.  I realized that to form particles, it would have to be a directional field without magnitude.  I use the example of the car seat cover that is made of orientable balls.  There’s no magnitude (assuming the balls are infinitely small in the field) but are orientable.  This is the basic structure of the Twist Field theory I’ve posted a lot about–this system gives us an analogous Schroedinger Equation basis for forming subatomic particles from twists in the field.

For a long time I thought this field had to be continuous and differentiable, but this contradicts Twist Theory which requires a discontinuity along the axis of the twist.  Now I’ve realize our basis field does not need to be differentiable and can have discontinuities–obviously not magnitude discontinuities but discontinuities in element orientation.  Think of the balls in the car seat mat–there is no connection between adjacent ball orientations.  It only looks continuous because forces that change element orientation act diffusely, typically with a 1/r^2 distribution.  Once I arrived at this conclusion that the field is not constrained by differentiability, I realized that one of the big objections to Twist Field theory was gone–and, more importantly, the connection of this field to emergence from nothing was stronger.  Why?  Because I eliminated a required connection between elements (“balls”), which was causing me a lot of indigestion.  I couldn’t see how that connection could exist without adding an arbitrary (did not arise from nothing) rule.

So, removing differentiability brings us that much closer to the bottom turtle.  Other constraints that have to exist are non-causality–quantum entanglement forces this.  The emergence of the speed of light comes from the fact that wave phase propagates infinitely fast in this field, but particles are group wave constructions.  Interference effects between waves are instantaneous (non-causal) but moving a particle requires *changing* the phase of waves in the group wave, and there is a limit to how fast this can be done.  Why?  I don’t have an idea how to answer this yet, but this is a good geometrical explanation for quantum entanglement that preserves relativistic causality for particles.

In order to quantize this field, it is sufficient to create the default orientation (this is required by Twist Field theory to enable emergence of the particle zoo).  I have determined that this field has orientation possible in three spatial dimensions and one imaginary direction.  This imaginary direction has to have a lower energy state than twists in the spatial dimension, thus quantizing local twisting to either no twists or one full rotation.  A partial twist will fall back to the default twist orientation unless there’s enough energy to complete the rotation.  This has the corollary that partial twists can be computed as virtual particles of quantum field theory that vanish when integrating over time.

The danger to avoid in quantizing the field this way is the same problem that a differentiable constraint would require.  I have to be careful not to create a new rule regarding the connectivity of adjacent elements.  It does appear to work here, note that the quantization is only for a particular element and requires no connection to adjacent elements.  The appearance of a connection as elements proceed through the twist is indirect, driven by forces other than some adjacent rubber-band between elements.  These are forces acting continuously on all elements in the region of the twist, and each twist element is acting independently only to the quantization force.   The twist discontinuity doesn’t ruin things because there is no connection to adjacent elements.

However, my thinking here is by no means complete–this default orientation to the imaginary direction, and the force that it implies, is a new field rule.  Where does this energy come from, what exactly is the connection between elements that enforces this default state?

 

Oh, this is long.  Congratulations on anyone who read this far–I like to think you are advancing science in considering my speculation!

Agemoz

Simulation Construction of Twist Theory

December 2, 2014

Back after dealing with some unrelated stuff.  I had started work on a new simulator that would test the Twist Theory idea, and in so doing ran into the realization that the mathematical premise could not be based on any sort of electrostatic field.  To back up a bit, the problem I’m trying to solve is a geometrical basis for quantization of an EM field.  Yeah, old problem, long since dealt with in QFT–but the nice advantage of being an amateur physicist is you can explore alternative ideas, as long as you don’t try to convince anyone else.  That’s where crackpots go bad, and I just want to try some fun ideas and see where they go, not win a Nobel.  I’ll let the university types do the serious work.

OK, back to the problem–can an EM field create a quantized particle?  No.  No messing with a linear system like Maxwell’s equations will yield stable solitons even when constrained by special relativity.  Some rule has to be added, and I looked at the old wave in a loop (de Broglie’s idea) and modified it to be a single EM twist of infinitesimal width in the loop.  This still isn’t enough, it is necessary that there be a background state for a twist where a partial twist is metastable, it either reverts to the background state, or in the case of a loop, continues the twist to the background state.  In this system–now only integer numbers of twists are possible in the EM field and stable particles can exist in this field.  In addition, special relativity allows the twist to be stable in Minkowski space, so linear twists propagating at the speed of light are also stable but cannot stop, a good candidate for photons.

If you have some experience with EM fields, you’ll spot a number of issues which I, as a good working crackpot, have chosen to gloss over.  First, a precise description of a twist involves a field discontinuity along the twist.  I’ve discussed this at length in previous posts, but this remains a major issue for this scheme.  Second, stable particles are going to have a physical dimension that is too big for most physicists to accept.  A single loop, a candidate for the electron/positron particle, has a Compton radius way out of range with current attempts to determine electron size.  I’ve chosen to put this problem aside by saying that the loop asymptotically approaches an oval, or even a line of infinitesimal width as it is accelerated.  Tests that measure the size of an electron generally accelerate it (or bounce-off angle impact particles) to close to light speed.  Note that an infinitely small electron of standard theory has a problem that suggests that a loop of Compton size might be a better answer–Heisenberg’s uncertainty theorem says that the minimum measurable size of the electron is constrained by its momentum, and doing the math gets you to the Compton radius and no smaller.  (Note that the Standard Model gets around this by talking about “naked electrons” surrounded by the constant formation of particle-antiparticle pairs.  The naked electron is tiny but cannot exist without a shell of virtual particles.  You could argue the twist model is the same thing except that only the shell exists, because in this model there is a way for the shell to be stable).

Anyway, if you put aside these objections, then the question becomes why would a continuous field with twists have a stable loop state?  If the loop elements have forces acting to keep the loop twist from dissipating, the loop will be stable.  Let’s zoom in on the twist loop (ignoring the linear twist of photons for now).  I think of the EM twist as a sea of freely rotating balls that have a white side and a black side, thus making them orientable in a background state.  There has to be an imaginary dimension (perhaps the bulk 5th dimension of some current theories).  Twist rotation is in a plane that must include this imaginary dimension.  A twist loop then will have two rotations, one about the loop circumference, and the twist itself, which will rotate about the axis that is tangent to the loop.  The latter can easily be shown to induce a B field that varies as 1/r^3 (formula for far field of a current ring, which in this case follows the width of the twist).  The former case can be computed as the integral of dl/r^2 where dl is a delta chunk of the loop path.  This path has an approximately constant r^2, so the integral will also vary as r^2.  The solution to the sum of 1/r^2 – 1/r^3 yields a soliton in R3, a stable state.  Doing the math yields a Compton radius.  Yes, you are right, another objection to this idea is that quantum theory has a factor of 2, once again I need to put that aside for now.

So, it turns out (see many previous posts on this) that there are many good reasons to use this as a basis for electrons and positrons, two of the best are how special relativity and the speed of light can be geometrically derived from this construct, and also that the various spin states are all there, they emerge from this twist model.  Another great result is how quantum entanglement and resolution of the causality paradox can come from this model–the group wave construction of particles assumes that wave phase and hence interference is instantaneous–non-causal–but moving a particle requires changing the phase of the wave group components, it is sufficient to limit the rate of change of phase to get both relativistic causality and quantum instantaneous interference or coherence without resorting to multiple dimensions or histories.  So lots of good reasons, in my mind, to put aside some of the objections to this approach and see what else can be derived.

What is especially nice about the 1/r^2 – 1/r^3 situation is that many loop combinations are not only quantized but topologically stable, because the 1/r^3 force causes twist sections to repel each other.  Thus links and knots are clearly possible and stable.  This has motivated me to attempt a simulation of the field forces and see if I can get quantitative measurements of loops other than the single ring.  There will be an infinite number of these, and I’m betting the resulting mass measurements will correlate to mass ratios in the particle zoo.  The simulation work is underway and I will post results hopefully soon.

Agemoz

PS: an update, I realized I hadn’t finished the train of thought I started this post with–the discovery that electrostatic forces cannot be used in this model.  The original attempts to construct particle models, back in the early 1900s, such as variations of the DeBroglie wave model of particles, needed forces to confine the particle material.  Attempts using electrostatic and magnetic fields were common back then, but even for photons the problem with electrostatic fields was the knowledge that you can’t bend or confine an EM wave with either electric or magnetic fields.  With the discovery and success of quantum mechanics and then QFT, geometrical solutions fell out of favor–“shut up and calculate”, but I always felt like that line of inquiry closed off too soon, hence my development of the twist theory.  It adds a couple of constraints to Maxwell’s equations (twist field discontinuities and orientability to a background state) to make stable solitons possible in an EM field.

Unfortunately, trying to model twist field particles in a sim has always been hampered by what I call the renormalization problem–at what point do you cut off the evaluation of the field 1/r^n strength to prevent infinities that make evaluation unworkable.  I’ve tried many variations of this sim in the past and always ran into this intractable problem–the definition of the renormalization limit point overpowered the computed behavior of the system.

My breakthrough was realizing that that problem occurs only with electrostatic fields and not magnetic fields, and finding the previously mentioned balancing magnetic forces in the twist loop.  The magnetic fields, like electrostatic fields,  also have an inverse r strength, causing infinities–but it applies force according to the cross-product of the direction of the loop.  This means that no renormalization cutoff point (an arbitrary point where you just decide not to apply the force to the system if it is too close to the source) is needed.  Instead, this force merely constrains the maximum curvature of the twist.  As long as it is less that the 1/r^n of the resulting force, infinities wont happen, and the curve simulation forces will work to enforce that.  At last, I can set up the sim without that hokey arbitrary force cutoff mechanism.

And–this should prove that conceptually there is no clean particle model system (without a renormalization hack) that can be built from an electrostatic field.  A corollary might be–not sure, still thinking about this–that magnetic fields are fundamental and electrostatic fields are a consequence of magnetic fields, not a fundamental entity in its own right.  The interchangability of B and E fields in special relativity frames of reference calls that idea into question, though, so I have to think more about that one!  But anyway, this was a big breakthrough in creating a sim that has some hope of actually representing twist field behavior in particles.

Agemoz

PPS:  Update–getting closer.  I’ve worked out the equations, hopefully correctly, and am in the process of setting them up in Mathematica.  If you want to make your own working sim, the two forces sum to a flux field which can be parametrically integrated around whatever twist paths you create.  Then the goal becomes to try to find equipotential curves for the flux field.  The two forces are first the result of the axial twist, which generates a plane angle theta offset value Bx = 3 k0 sin theta cos theta/r^3, and Bz = k0 ( 3 cos^2 theta -1)/r^3.  The second flux field results from the closed loop as k0 dl/r^2).  These will both get a phase factor, and must be rotated to normalize the plane angle theta (some complicated geometry here, hope I don’t screw it up and create some bogus conclusions).  The resulting sum must be integrated as a cross product of the resulting B vector and the direction of travel around the proposed twist path for every point.

Principle of Replication and the Particle Zoo

June 27, 2014

I am continuing to develop the new twist simulation, and hope to get first runs maybe in the next several weeks or months.  It’s been a good exercise because it has forced me to be very clear and explicit about how the model works.  To paraphrase Feynman very loosely, “the truth does not lie”–I can’t just make the theory work just because I want it to.  But the exercise has been good because it’s clarified some important concepts that are distributed all throughout this blog, and thus a casual reader is going to have a very difficult time figuring out what I am talking about and whether there’s any real substance to what I’m thinking.  While there is a *lot* of thinking behind this approach, here are the fundamental concepts that are driving how this simulation is being built:

The twist field concept starts with E=hv for all particles, and this is a statement of quantization.  For any given frequency, there is only one possible energy.  If we assume a continuous field, the simplest geometrical model of this is a full twist in a field of orientations.  E=hv implies no magnitude to the field, you can imagine a field of orientable dots within a background state direction–quantization results when only a complete rotation is permitted, thus implying the background default direction that all twists must return to.

The second concept is a duality–if there is a vast field of identical particles, say electrons, the dual of exact replication is a corresponding degree of simplicity.  While not a proof, the reason I call simplicity the dual of replication is because the number of rules required to achieve massive repeatability has to withstand preservation of particles in every possible physical environment from the nearly static state–say, a Milliken droplet electron all the way to electrons in a black hole jet.  The fewer the rules, the fewer environments that could break them.

The third concept is to realize causality doesn’t hold for wave phase in the twist model.  Dr. Bell proved that quantum entanglement means that basic Standard Model quantum particles cannot have internal structure if causality applies to every aspect of nature.  The twist model says that waves forming a particle are group waves–a change in phase in a wave component is instantaneous across the entire wave–but the rate of change of this phase is what allows the group wave particle to move, and this rate of change is what limits particle velocity to the speed of light.  This thus allows particles to interfere instantaneously, but the particle itself must move causally.  Only this way can a workable geometry for quantum entanglement, two-slit experiments, and so on be formed.

Within these constraints the twist model has emerged in my thinking.  A field twist can curve into stable  loops based on standard EM theory and the background state quantization principle.  A particle zoo will emerge because of a balance of two forces, one of which is electrostatic (1/r*2, or central force) and the other is electromagnetic (1/r*3).  When a twist curve approaches another twist curve, the magnetic (1/r*3) repulsion dominates, but when two parts of a curve (or separate curves) move away from each other, the electrostatic attractive force dominates.  Such a system has two easily identifiable stable states, the linear twist and the ring.  However there are many more, as can be easily seen when you realize that twist curves cannot intersect due to the 1/r*3 repulsion force dominating as curves approach.  Linked rings, knots, braids all become possible and stable, and a system of mapping to particle zoo members becomes available.

Why do I claim balancing 1/r*2 and 1/r*3 forces exist?  Because in a twist ring or other closed loop geometries, there are a minimum of two twists–the twist about the axis /center of the ring, and the twist about the path of the ring–imagine the linear twist folded into a circle.  Simple Lorentz force rules will derive the two (or more, for complex particle assemblies such as knots and linked rings) interacting forces.  Each point’s net force is computed as a sum of path forces multiplied by the phase of the wave on that path–you can see the resemblance to the Feynman path integrals of quantum mechanics.

Soon I’ll show some pictures of the sim results.

Hopefully that gives a clear summary of why I am taking this study in the directions I have proposed.

Agemoz

Noncausal solution, Lorentz Geometry, and trying a LaGrangian solution to deriving inertia

December 31, 2012

Happy New Year with wishes for peace and prosperity to all!

I had worked out the group wave concept for explaining non-causal quantum interactions, and realized how logical it seems–we are so used to thinking about the speed of light limit causing causal behavior that it makes the non-causal quantum interactions seem mysterious.  But when thinking of a universe that spontaneously developed from nothing, non-causal (infinite speed) interactions should be the default, what is weird is why particles and fields are restricted to the speed of light.  That’s why I came up with the group wave construct for entities–a Fourier composition of infinite speed waves explains instant quantum interference, but to get an entity such as a particle to move, there is a restriction on how fast the wave can change phase.  Where does that limitation come from?  Don’t know at this point, but with that limitation, the non-causal paradox is resolved.

Another unrelated realization occurred to me when I saw some derivation work that made the common unit setting of c to 1.  This is legal, and simplifies viewing derivations since relativistic interactions now do not have c carried around everywhere.  For example, beta in the Lorentz transforms now becomes Sqrt(1 – v^2) rather than Sqrt(1 – (v^2/c^2)).  As long as the units match, there’s no harm in doing this from a derivation standpoint, you’ll still get right answers–but I realized that doing so will hide the geometry of Lorentz transforms.  Any loop undergoing a relativistic transform to another frame of reference will transform by Sqrt(1 – (v^2/c^2)) by geometry, but a researcher would maybe miss this if they saw the transform as Sqrt(1 – v^2).   You can see the geometry if you assume an electron is a ring with orientation of the ring axis in the direction of travel.  The ring becomes a cylindrical spiral–unroll one cycle of the spiral and the pythagorean relation Sqrt(1 – v^2/c^2)) will appear.  I was able to show this is true for any orientation, and hand-waved my way to generalizing to any closed loop other than a ring.  The Lorentz transforms have a geometrical basis if (and that’s a big if that forms the basis of my unitary twist field theory) particles have a loop structure.

Then I started in on trying to derive general relativity.  Ha Ha, you are all laughing–hey, The Impossible Dream is my theme song!  But anyway, here’s what I am doing–if particles can be represented by loops, then there should be an explanation for the inertial behavior of such loops (totally ignoring the Higgs particle and the Standard Model for right now).  I see a way to derive the inertial behavior of a particle where a potential field has been applied.  A loop will have a path through the potential field that will get distorted.  The energy of the distortion will induce a corrective effect that is likely to be proportional to the momentum of the particle.  If  I can show this to be true, then I will have derived the inertial behavior of the particle from the main principle of the unitary twist field theory.

My first approach was to attempt a Lagrangian mechanics solution.  Lagrange’s equation takes the difference of the kinetic energy from the potential energy and creates a time and space dependent differential equation that can be solved for the time dependent motion of the particle.  It works for single body problems quickly and easily, but this is a multiple body problem with electrostatic and magnetic forces.  My limited computation skills rapidly showed an unworkable equation for solution.  Now I’m chewing on what simplifications could be done that would allow determining the acceleration of the particle from the applied potential.

Agemoz

Noncausal Interactions, part II

December 11, 2012

I want to clarify the previous posting on how I resolve the noncausal paradox in unitary twist field theory–after all, this is the heart of the current struggle to create a quantum gravity theory.  Here, I’m continuing on from the previous post, where I laid out the unitary twist field theory approach for quantum interactions.  In there, I classified all particle interactions as either causal physical or noncausal quantum, and quantum interactions fall into many categories, two of which are interference and entanglement.  These two quantum interactions are non-causal, whereas physical interactions are causal–effects of physical interactions cannot go faster than the speed of light.

Many theories have attempted to explain the paradoxes that result from the noncausal quantum interactions, particularly because relativity theory specifies that no particle can exceed the speed of light.  The Copenhagen interpretation, multiple histories, string theories such as M theory, the Pilot wave theory, etc etc all attempt to resolve this issue–but in my research I have never found anyone describe what to me appears to be a simple solution–the group wave approach.

In my previous posting, I described this solution:  If every particle is formed as a Fourier composition of waves, the particle can exist as a group wave.  Individual wave components can propagate at infinite speed, but the group composition is limited to speed c.  This approach separates out particle interactions as having two contributors:  from the composite effect of changing the phase of all wave components (moving the center of the group wave) and the effect of changing the phase of a single fundamental wave component.  If the individual wave components changed, the effect is instantaneous throughout spacetime, but there is a limitation in how quickly the phase of any give wave component can be changed, resulting in a limitation of how quickly a group wave can move.

It’s crucial to understand the difference, because this is the core reason why the paradox resolves.  Another way to say it is that when a change to a wave component is made, the change is instantaneous throughout R3–but the rate of change for any component has a limit.  An analogy would go like this: you have two sheets of transparency paper with a pattern of parallel equally spaced lines printed on it.  If you place each sheet on top of each other at an angle, you will see a moire pattern.  Moving one sheet relative to the other will move the moire pattern at some speed limited by how quickly you moved the sheet.  But note that every printed line on that sheet moved instantaneously relative to every other line on that sheet–instantaneous wave component movement throughout R3.  Note that the interference pattern changes instantaneously, but the actual movement of the moire pattern is a function of how fast the sheets are moved relative to each other–exactly analogous to what we see in real life.  This is the approach that I think has to be used for any quantum gravity theory.

Agemoz