Posts Tagged ‘particle zoo’

Finally–A Particle Twist Solution Methodology

April 8, 2014

About six months ago, I was able to show qualitatively that the twist field had more than one stable solution, which implies that it could represent more than just the photon and electron variants.  I was easily able to show that any set of closed contours (twist paths) were topologically equivalent as long as no contour crosses, and the unitary field twist theory meets this constraint because twist paths are central force attractive (1/r^2 magnitude) but are repulsive by 1/r^3, so the sum is asymptotically repulsive as a twist path approaches another twist path.  This was a big breakthrough because now any interlinked loops or knots become unique and stable solutions, opening the door for representing the particle zoo.

I thought, great, now all I have to do is get some quantitative solutions and determine the relative mass to the twist field ring, and that would prove (or disprove, perhaps) the whole twist field concept.

Turns out, that is an extraordinarily difficult problem, and I’ve spent the last six months trying to figure out how to do it.  I finally figured out a crude iterative way to do it.

You would think this is a simple LaGrange mechanics problem, but my in-depth study seems to show this isn’t a workable approach.  The contour potential energy must be computed at every point, and is the integral of all other points of the entire contour set.  In fact, this problem has a stunning similarity to Feynman path integrals, with the complication that everything (all contour points) can move in 3D+T.  It cannot be assumed that the contours are symmetric, in fact if this indeed does model real particles, it’s easy to show that most solutions are not symmetric (contours are identical but displaced or rotated).  Worse, it’s likely many solutions are not stable in time, so methodologies invoking gauge invariance can’t be used here.

It was almost immediately obvious that trying to find a minimum path for the contour in the 1/r^2 – 1/r^3 field wouldn’t work (the field is an integral of all contours, but the contour path changes in each delta time), hence the LaGrange mechanics couldn’t be used in practice, the resulting differential equations would be phenomenally complex.  Simple iterative methods don’t work because there are constraints that are not really workable in an array  simulation–the energy of a loop must remain constant, so its length may not vary–but assuming constant spacing of simulation nodes doesn’t work for several reasons.  First, the solution loop length is not known, and fixing it defeats the goal of quantitatively finding that length.  Second, applying iterations to a chain of segments means that moving one segment means that a large set of adjacent segments also has to move instantaneously–not impossible, but each segment also has its own movement directives, which then would recursively affect the original movement directive.  I thought, well, let’s just make the segments stretchable, but adding that into the vector field complicates the computation significantly and appears to destroy the actual force balance between contour elements.  It’s a mess, believe me, I tried.

The approach I came up with is to just find any topologically equivalent set of contours and just start with that.  Compute the vector field neighborhood around each contour node and  then adjust each contour at each contour point until the vector field has minimal magnitude on each contour point.  Yes, there is considerable danger that doing this method of  iteration of contours will not be stable and converge, but I can see several outcomes that should yield valuable information anyway.  First, if nearly all vector field magnitudes point outwards (or all inwards), this means that the contour energies (and hence loop length) should be adjusted, so closure to a stable mass value should be possible regardless of the stability of the contour path shape iteration.  Second, there are many topologically unique solutions–that is already trivial to see.  If one contour set isn’t timewise stable or does not converge, either a different contour set could be tried or data from the iteration could be used to find a better starting point for the contour path.

I will put together a new sim (technically no longer a sim, but a generator) that does this contour vector field neighborhood and makes it easy to adjust the contour paths.  I have no doubt that over time I will come up with better and faster methods to arrive at solutions.

Agemoz

UPDATE:  Some additional thinking showed that taking a vector field derivative will yield the contour normal, and the direction will directly give the desired expansion directive.  It would be nice if the normal magnitude would also give the minima that would establish the optimized twist path, but it won’t–it will only give the minimum for that point given that the rest of the contour paths are unchanged.  As soon as any other portion of the paths change, this minimum will also change.  Perhaps there is a LaGrange multiplier scheme that will work to find the minima for all points on all paths.  I’m quickly sensing that there are a number of mathematical tools that can be brought to bear on this problem.

Yang-Mills Mass Gap

January 12, 2014

My study of vector field twists has led to the discovery of stable continuous field entities as described in the previous post (Dec 29th A Particle Zoo!).  I’ve categorized the available types of closed and open solutions into three broad groups, linear, knots, and links.  There’s also the set of linked knots as a composite solution set.  I am now trying to write a specialized simulator that will attempt quantitative characterization of these solutions–a tough problem requiring integration over a curve for each point in the curve–even though the topology has to be stable (up to an energy trigger point where the particle is annhiliated), there’s a lot of degrees of freedom and the LaGrange methodology for these cases appears to be far too complex to offer analytic resolution.  While the underlying basis and geometry is significantly different, the problem of analysis should be identical to the various string theory proposals that have been around for a while.  The difference primarily comes from working in R3+T rather that the multiple new dimensions postulated in string theory.  In addition, string theory attempts to reconcile with gravity, whereas the field twist theory is just trying to create an underlying geometry for QFT.

One thing that I have come across in my reading recently is the inclusion of the mass gap problem in one of the seven millenial problems.  This experimentally verified issue, in my words, is the discovery of an energy gap in the strong force interaction in quark compositions.  There is no known basis for the non-linear separation energy behavior between bound quarks or between quark sets (protons and neutrons in a nucleus).  Dramatically unlike central quadratic fields such as electromagnetic and gravitational fields, this force is non-existent up to a limit point, and then asymptotically grows, enforcing the bound quark state.  As far as we know, this means free quarks cannot exist.  As I mentioned, the observation of this behavior in the strong force is labeled the Yang-Mills Mass Gap, since the energy delta shows up as a mass quantization.

As I categorized the available stable twist configurations in the twist field theory, it was an easy conclusion to think that the mass gap could readily be modelled by the group of solutions I call links.  For example, the simplest configuration in this group is two linked rings.  If each of these were models of a quark, I can readily imaging being able to apply translational or moment forces to one of the rings relative to the other with nearly no work done, no energy expended.  But as soon as the ring twist nears the other ring twist, the repulsion factor (see previous post) would escalate to the energy of the particle, and that state would acquire a potential energy to revert.  This potential energy would become a component of the measurable mass of the quark.

The other question that needs to be addressed is why are some particles timewise stable and others not, and what makes the difference.  The difference between the knot solutions and the link solutions is actually somewhat minor since topologically knots are the one-twist degenerate case of links.  However, the moment of the knot cases is fairly complex and I can imagine the energy of the configuration could approach the particle energy and thus self-destruct.  The linear cases (eg, photons, possibly neutrinos as a three way linear braid) have no path to self destruct to, nor does the various ring cases (electron/positrons, quark compositions).  All the remaining cases have entwining configurations that should have substantial moment energies that likely would exceed the twist energy (rate of twisting in time) and break apart after varying amounts of time.

The other interesting realization is the fact that some of these knot combinations could have symmetry violations and might provide a geometrical understanding of parity and chirality.

One thing is for sure–the current understanding I have of the twist field theory has opened up a vast vein of potentially interesting hypothetical particle models that may translate to a better understanding of real-world particle infrastructure.

Agemoz

A Particle Zoo!

December 29, 2013

After that last discovery, described in the previous post, I got to a point where I wondered what I wanted to do next.  It ended the need in my mind to pursue the scientific focus described in this blog–I had thought I could somehow get closer to God by better understanding how this existence worked.  But then came the real discovery that as far as I could see, it’s turtles all the way down, and my thinking wasn’t going to get me where I wanted to go.

So I stopped my simulation work, sat back and wondered what’s next for me.  It’s been maybe 6 months now, and while I still think I was right, I miss the fun of thinking about questions like why is there a particle zoo and whether a continuous field could form such a zoo.  While I don’t sense the urgency of the study anymore, I do think about the problem, and in the recent past have made two discoveries.

One was finding a qualitative description of the math required to produce the field vector twist I needed for my Unitary Field Twist theory, and the second was a way to find the available solutions.  The second discovery was major–it allowed me to conceptualize geometrically how to set up simulations for verification.  The problem with working with continuous vector fields required by the twist theory is that solutions are described by differential equations that are probably impossible to solve analytically.  Sometimes new insights are found by creating new tools to handle difficult-to-solve problems, and to that end I created several simulation environments to attempt numerical computations of the twist field.  Up to now, though, this didn’t help finding the available solutions.

What did help was realizing that the base form of the solutions produce stable solutions when observing the 1/r(t)^3 = 1/r(t)^2 relation–the relation that develops from the vector field’s twist-to-transformation ratio.  Maxwell’s field equations observe this, but as we all know, this is not sufficient to produce stable particles out of a continuous field, and thus cannot produce quantization.  The E=hv relation for all particles led me to the idea that if particles were represented by field twists to some background state direction, either linear (eg, photons) or closed loops, vector field behavior would become quantized.  I added a background state to this field that assigns a lowest energy state depending on the deviation from this background state.  The greater the twist, the lower the tendency to flip back to the background state.  Now a full twist will be stable, and linear twists will have any possible frequency, whereas closed loops will have restricted (quantized) possibilities based on the geometry of the loop.

For a long time I was stuck here because I could see no way to derive any solutions other than the linear solution and the ring twist, which I assigned to photons and electrons.  I did a lot of work here to show correct relativistic behavior of both, and found a correct mass and number of spin states for the electron/positron, found at least one way that charge attraction and repulsion could be geometrically explained, found valid Heisenberg uncertainty, was able to show how the loop would constrain to a maximum velocity for both photons and electrons (speed of light), and so on–many other discoveries that seemed to point to the validity of the twist field approach.

But one thing has always been a problem as I’ve worked on all this–an underlying geometrical model that adds quantization to a continuous field must explain the particle zoo.  I’ve been unable to analytically or iteratively find any other stable solutions.  I needed a guide–some methodology that would point to other solutions, other particles.  The second discovery has achieved this–the realization that this twist field theory does not permit “crossing the streams”.  The twists of any particle cannot cross because the 1/r(t)^3 repulsion factor will grow exponentially faster than any available attraction force as twists approach each other.  I very suddenly realized this will constrain available solutions geometrically.  This means that any loop system, connected or not, will be a valid solution as long as they are topologically unique in R3.  Immediately I realized that this means that links and knots and linked knots are all valid solutions, and that there are an infinite number of these.  And I immediately saw that this solution set has no morphology paths–unlike electrons about an atom, you cannot pump in energy and change the state.  We know experimentally that shooting high energy photons at a free electron will not alter the electron, and correspondingly, shooting photons at a ring or link or knot will not transform the particle–the twists cannot be crossed before destroying the particle.  In addition, this discovery suggests a geometrical solution to the experimentally observed strong force behavior.  Linked loops modelling quarks will permit some internal stretching but never breaking of the loop, thus could represent the strong force behavior when trying to separate quarks.  And, once enough energy were available to break apart quarks, the resulting particles could not form free quarks because these now become topologically equivalent to electrons.

My next step is to categorize the valid particle solutions and to quantify the twist field solutions, probably by iterative methods, and hopefully eventually by analytic methods.

There’s no question in my mind, though–I’ve found a particle zoo in the twist field theory.  The big question now is does it have any connection to reality…

Agemoz