Posts Tagged ‘quantization’

Noncausal interactions in the Unitary Twist Field Theory

December 10, 2012

It’s been a little while since I’ve posted, partly because of my time spent on the completion of a big work project, and partly because of a great deal of thinking before posting again (what a concept!  Something new!).  This blog has traveled through a lot of permutations and implications of the unitary twist field theory.  It starts by assuming that the Standard Model is valid, but then tries to create an underlying geometry for quantization and special relativity.  This twist vector field geometry is based on E=hv, and has worked pretty well–but when we get to entangled particles and other noncausal aspects of quantum theory, I’ve needed to do some new thinking.  While the noncausal construct is easily built on group wave theory (phase information propagates at infinite speed, but group Fourier compositions of waves that make up particles are limited to speed c), there are significant consequences for the theory regarding its view of the dimensional characteristics of the 3D+T construct of our existence.

As I mentioned, the unitary twist field theory starts with E=hv, the statement that every particle is quantized to an intrinsic frequency.  There really is only one way to do this in a continuous system in R3+T:  a twist within a background state vector field.  Twists are topologically stable, starting from the background direction and twisting to the same background direction with an integral turn.  Quantization is achieved because partial turns cannot exist (although virtual particles exist physically as partial turns for a short time before reverting back to the background state).  With this, I have taken many paths–efforts to verify this pet theory could really work.  For example, I tested the assumption of a continuous system–could the field actually be a lattice at some scale.  It cannot for a lot of reasons (and experiments appear to confirm this), especially since quantization scales with frequency, tough to do with a lattice of specific spacing.  Another concern to address with twist field theory occurs because it’s not a given that the frequency in E=hv has any physical interpretation–but quantum theory makes it clear that there is.  Suppose there was no real meaning to the frequency in E=hv–that is, the hv product give units that just happen to match that of frequency.  This can’t be true, because experimentally, all particles quantum interfere at the hvfrequency, an experimental behavior that confirms the physical nature of the frequency component.

So–many paths have been taken, many studies to test the validity of the unitary twist field theory, and within my limits of testing this hypothesis, it seems so far the only workable explanation for quantization.  I believe it doesn’t appear to contradict the Standard Model, and does seem to add a bit to it–an explanation for why we see quantization using a geometrical technique.  And, it has the big advantage of connecting special relativity to quantum mechanics–and I am seeing promising results for a path to get to general releativity.  A lot of work still going on there.

However, my mind has really taken a big chunk of effort toward a more difficult issue for the unitary twist field theory–the non-causality of entangled particles or quantum interference.  Once again, as discussed in previous posts here, the best explanation for this seems pretty straightforward–the particles in unitary twist field theory are twists that act as group waves.  The group wave cluster, a Fourier composition, is limited to light speed (see the wonderful discovery in a previous post that any confined twist system such as the unitarty twist field theory must geometrically exhibit a maximum speed, providing a geometrical reason for the speed of light limit).  However, the phase portion of the component waves is not limited to light speed and resolves the various non-causal dilemmas such as the two-slit experiment, entangled particles, etc, simply and logically without resorting to multiple histories or any of the other complicated attempts to mash noncausality into a causal R3+T construct.

But for me, there is a difficult devil in the details of making this really work.  Light-speed limited group waves with instantaneous phase propagation raises a very important issue.  Through a great deal of thinking, I believe I have shown myself that noncausal interactions which require instantaneous phase propagation, will specify that distance and time be what I call “emergent” concepts–they are not intrinsic to the construction of existence, but emerge–probably as part of the initial Big Bang expansion.  If so, the actual dimensions of space-time are also emergent–and must come from or are based on a system with neither–a zero dimensional dot of some sort of incredibly complex oscillation.  Why do I say this?  Because instantaneous phase propagation, such as entangled particle resolving, must have interactions in local neighborhoods that do not have either a space or time component.  Particles have two types of interactions–ones where two particles have similar values for R3+T (physical interactions), and those that have similar values only in phase space.  In either case, two particles will affect each other.  But how do you get interactions between two particles that aren’t in the same R3+T neighborhood?  Any clever scheme like the Standard Model or unitary twist field theory must answer this all important question.

Physicists are actively trying to get from the Standard Model to this issue (it’s a permutation of the effort to create a quantum gravity theory).  As you would expect, I am trying to get from the unitary twist field theory to this issue.  Standard Model efforts have typically either focused on adding dimensions (multiple histories/dimensions/string theories) or more exotic methods usually making some set of superluminal assumptions.  As mentioned in previous posts, unitary twist field theory has twists that turn about axes in both an R3 and a direction I that is orthogonal to R3 in time.  Note that this I direction does not have any dimensional length–it is simply a vector direction that does not lie in R3.  When I use the unitary twist field theory to show how particles will interact in R3+T, either physically or in entangled or interfering states, those particles would simply have group wave constructs with either a matching set of R3+T values (within some neighborhood epsilon value) or must have matching phase information in the I space.  In other words, normal “nearby”  interactions between two particles happen in a spacetime neighborhood, but quantum interference interactions happen in the I space, the land that Time and Space forgot.  There is no dimensional length here, but phase matches allow interaction as well.  This appears to be a fairly clean way to integrate noncausal behavior into the unitary twist field theory.

Obviously, there are still things to figure out here, but that is currently the most promising path I see for how unitary twist field theory will address the noncausal interaction construct issue.

Agemoz

 

Experimental Confirmation of Lattice-Free Spacetime

September 1, 2012

In my previous post, I posited that spacetime cannot be a lattice at Planck scale distances, and by sheer coincidence, this completely different experimental report also confirms the likelihood that spacetime is smooth at this scale:

http://www.space.com/17399-gamma-ray-photons-quantum-spacetime.html

A smooth spacetime means that Planck scale lumpiness (a lattice of one of the types I describe in the previous post) will not explain quantization.  I suspected that anyway, because quantization is scale independent.  Low energy photons are quantized over distances that are enormously vast (hundreds of orders of magnitude) compared to Planck scale distances, so I did not see how a lattice could induce that quantization.

The field twist is also scale independent, so is another nice arrow in the quiver for unitary twist field theory.  But I’m grappling with a big problem as I develop the specular simulator for the unitary field twist theory.  The probability of electron motion is affected by its ability to self absorb a virtual photon, and this probability is directly proportionate to the fine structure constant.  I believe that this number is the square of the probability to emit and the probability to absorb, making each have about an 8 percent chance of occurring.  Physicists have absolutely no clue why this probability is what it is.  QFT gives no guidance but uses the experimentally determined value of interaction probability as a foundation for every quantum interaction of particles and fields.

As usual, I am trying to find a geometrical reason that the unitary field twist theory might give that probability–some ideas, but nothing obvious.  I have to figure something out before I can even start constructing the specular sim.

Agemoz

Lattice fields and Specular Simulation (latest work)

August 25, 2012

The latest work on the twist model is proceeding.  This work makes the assumptions noted in previous posts–EM interactions are mediated by photons as a quantized linear field twists.  The current work assumes these photons comprise the macroscopic electrostatic and magnetic field,  are unitary, and that they are sparse (do not interact).  It assumes that the twist has a common imaginary axis and three real dimensions on R3, similar but not the same as the QFT EM field, which is a complex value on R3 (t is assumed in both cases).  Electron-photon interactions occur when a twist ring captures a linear twist and absorbs it.  I am assuming that a photon twist is magnetic when the real axis of the twist is normal to the real dimension direction of travel, and is electrostatic when the real axis of the twist is tangent to the direction of travel (note how relativistic motion will alter the apparent axis direction, causing the expected shift of photons from electrostatic to magnetic or vice versa).

This set of assumptions creates a model where the linear twist of the photon will affect a twist ring electron in different ways depending on the photon twist axis direction.  Yes, this is a rather classical approach that ignores the fact that quantum interactions are probability distributions, among other things.  My approach is to create a model simulation environment to test the hypothesis that quantization can accurately be represented by field twists, the foundation of the unitary twist field theory.  It does not currently include entanglement, which I represent as the assumption that field twist phase information is instantaneous but that particles (twists) are group wave assemblies that propagate no faster than the speed of light.

These assumptions require that I make changes to my current simulator, which is a lattice approximation of a continuous vector field twist.  I was able to show in that simulator that a continuous twist solution could not work due to the unitary field blocking effect.  From that (and from QFT), I concluded that the twist field must be sparse and specular, where interactions are mediated by linear twist photons that do not interact.  I cannot use my existing simulator for this model but must make a new version, which is underway.  It will take a while so my posts will become less frequent until I get this working.

However, since I am now going away from a lattice simulator to a sparse model simulator, it did make me think about lattices as a representation of existence, and I concluded that that cannot be.  I have often seen theories that our universe is a quantum scale lattice of Planck length.  This supposedly would explain quantization, but I don’t think it works–the devil is in the details.  If the lattice is periodic, such as an array of cube vertexes or tetrahedral vertices, then there should be angles that propagate photons differently than others.  If our existence is spinning on a periodic lattice, we should see harmonics of that spin as background noise.  Within the range of our ability to detect such “radiation” from space, neither are happening.

So, suppose the lattice is not periodic but is a random clustering of vertexes, which solves the problem of periodicity causing background frequencies.  In that case, I would expect that photon propagation would have velocity variation as it propagated through varying spacing of vertexes.  There would have to be an upper bound to the density of vertexes to ensure apparent constant speed, and I struggle to think what would enforce that bound.  This is probably the most workable of the lattice ideas, but due to the necessity of a vertex spacing constraint, there would have to be an upper limit to the allowable energy of a photon, something we have no evidence for.  At this point, I think there is no likelihood that existence can be described as a lattice.  That hypothesis is attractive because we can easily imagine a creator God could build a computer that could most easily create a model of existence using a lattice of some form.  But even though the Planck length lattice is far too small for us to detect directly, I don’t think the evidence points that way.  (Side note:  it’s so interesting to look at early literature to see the historical evolution of what people thought formed the underlying basis for our existence–early on, God creating and controlling a mechanical model, then universe models were complex automated assemblies of gears and pullies, then the steam-engine or steam-punk type of machine, then mechanical computing engines, and now computer program driven machines simulating a lattice…  What is next? !)

Back to the lack of evidence for an underlying lattice to our existence.  This is a more important  realization than it might appear, especially from a philosophical standpoint.  If there was evidence that the universe was built on a lattice, that would strongly imply creation by a being, because a lattice is an underlying structure and constraint.  Evidence that there is no lattice, which is what I think I am seeing, would imply that there is no higher being because it is hard for me to imagine constructing a world without a lattice.  Of course, it would only be a mild implication, because my ability to imagine how a universe could be constructed without a lattice is limited.  Nevertheless, it is a pointer in the direction of existence coming from nothing rather than being constructed by a God.

Pretty interesting stuff!  More to come as the new simulator work gets underway.
Agemoz

Quantized Fields

July 11, 2012

No, I’m not going to talk about the Higgs boson.  Well, except to make one reference to it as far as my work is concerned:  it’s a new (but long predicted, and not yet shown to actually be the Higgs) particle and field to add to the particle zoo.  A step backwards, in a way–I think our understanding will advance when we find underlying connections between particles and fields, but adding more to the pile isn’t helpful to a deeper understanding.  Oh, and that the Higgs approach adds an inertial property to mass particles, a mechanism caused by a drag effect relative to the field.  That matters to my work because it appears to be a different mechanism than how I propose mass gets attached to particles.  Yes, it calls into question the validity of my work, but so do a whole bunch of other things.  I’m proceeding anyway.

I got some interesting results from some simulation efforts–a second stable state with three components.  It is particularly interesting because it appears to settle into a three way braid–and more importantly, seems to progress to faster and faster speeds–limited to the speed of light.  Not sure why it does that, more investigative work to determine if this is a model problem or real behavior of the three twist solution.  Does make me think of a neutrino, but that’s pure speculation.  Here’s some curious pics.  These sim has all three twists with equal momentum.  I’m going to set one or two twists to double momentum and see what happens.  I also need to fix the attraction/repulsion in these cases, currently these cannot represent reality because of three charge values instead of two in real life (+,-)–but you can see what a fertile ground the twist model shows.

This 3D simulation of a three twist interaction stabilizes into three way braid

This 3D projection of a three way twist array eventually stabilizes into a closely interacting stable entity

But the real work I’ve been doing lately is not these sims–instead, it’s my thinking about the continuous property of fields and quantization.  If the unitary twist field is continous, it is blocking–a twist bend cannot propagate through another twist bend if it is separated by a plane with background state orientation–another way of saying a continuous unitary field cannot be linear.  Real EM fields are linear.  Are they also continuous?  At first, I said no, they can’t be,  since real EM fields should be blocking as well.  But then I realized that unlike the unitary twist field, real EM fields are linear (effectively can pass through each other) because the field of one source can add on top of another field from another source.  In this case, the magnitude of the field at a given point is not constrained, so this is what makes the fields of QFT work, that is, be continuous and also linear.

Mathematically, that is possible–but now I believe that even the QFT model of fields such as the EM field cannot be continuous for a different reason, field quantization.  QFT says you cannot extract any energies from the field that don’t meet the quantization constraint.   Unitary twist fields will derive this quantization because only full twists from and to the background field direction are possible and topologically stable.  Any partial twist must return to the background state and will dissipate.  Here’s why I now think that any quantized field cannot be continuous.  Let’s talk unitary twist field first.  I had a groundbreaking discovery with unitary twist fields a month or so ago when I found that if this field is continuous, it is possible to create a situation where it blocks passage of field states.  If you put two oppositely charged particles separated by a distance r, symmetry requires that a plane separating the two particles must have zero twist, and thus one particle would see zero twist at distance r/2–the same thing it would see at an infinite distance.  The problem is, then there is a situation where there is no difference from the uncharged background state and the first particle cannot respond differently than if there were no nearby charged particles.  The bisecting plane with zero bend acts as a barrier preventing or blocking  the other particle from affecting the first.

OK, that was the unitary twist field case.  Now the QFT case doesn’t have this problem since the bisecting plane holds magnitudes, not the zero background state of the unitary twist field.  Therefore, the first particle can be subject to the effects of the second particle since the bisecting plane no longer blocks.

But, QFT fields have a different problem that still says it can’t be continuous.  A non-continuous field is the saving grace that might allow unitary twist fields to be a valid underlying solution–if the field is not continuous, but is granular.  If the QFT field has to be granular, then unitary twist field theory becomes a valid underlying architecture for QFT (of course, other constraints or problems might invalidate unitary twist theory, but right now granularity allows the unitary twist field to be non-blocking, otherwise there’s no way it could work).  In the granular case, a given epsilon neighborhood sees these passing components going from one particle to the other without blocking.  Thus, any quantized field such as QFT fields or unitary twist fields will be linear (and div and curl will be zero) if and only if the granular parts do not interact.

As I continued down this path of thinking, I began to realize that whether the QFT EM field or the unitary twist field are correct real world descriptions, neither of them can be continuous.   You could argue that the field itself is continuous but the particles that are extracted from the field are quantized, but this idea has serious fails if you create a field from a limited number of quanta.  Inductive reasoning is going to force either model of the field to be composed of granular components–it will not be possible to create a field from two quanta that is continuous because the information of the quanta is preserved.  Why do I say that?  Because a two quanta field that is continuous may only release a quantized particle from the energy of the field.  If the quanta information is preserved in the field, I cannot see any way that a definition of continuous could apply to this field.

Now, if the field is composed of quanta that do not interact, then linearity will result simply by the ability of packing more or less quanta into a set epsilon volume.  Linearity means that the quanta cannot interact (otherwise magnitudes at some points will not sum, a linearity requirement).  Therefore, the quantized field can be considered granular and infinitely sparse, that is, no constructive summation of fields can cause loss of total volume density of quanta.  In other less obtuse and verbose words, the quantized field must not be continuous and must consist of non-interacting quanta, regardless of whether we are talking unitary twist field or QFT EM fields.  If you buy this, then the twist field is not blocking and is still a potentially valid description of reality.  If this is true, then the geometrical basis for quantization comes from the twists returning to a background state, a conclusion that QFT currently does not provide, and thus  unitary twist field theory work is still a worthwhile effort.

Agemoz

Vector Field Neighbors

May 28, 2012

I have been thinking a lot about the latest work on twist fields.  It has a lot of good things about it, it appears to successfully add quantization and special relativity to a vector field.  It opens up a possible geometry for the particle zoo.

But if this is really going to be workable or provable, I’m going to have to create a simulation, and that has to start with a mathematical basis.  And that wont come until I understand how the vector field operates on neighbors.  Yes, the unitary twist field has the right configuration to make things work, but the actual quantitative behavior is completely dependent on how the field propagates in space and time.  Up to now, the model looks like a sea of rotating balls, each with a black point spot that normally points in an imaginary direction, but can temporarily point in a real space formed by three real basis vectors orthogonal to the imaginary direction.  (Note that this discrete representation simplifies visualization, but there is no reason that the correct solution can’t be continuous, in fact I suspect it is).  If there is a connection between adjacent ball directions, the necessary quantization, stable particle formation, and special relativity behaviors will result.  However, a quantitative specification of these behaviors is entirely and completely specified by the nature of this neighborhood connection.

How does one ball affect its immediate neighbors?  Can a ball affect nearby balls that are not immediate neighbors?  Can a ball move in 3D or is everything that happens solely a function of ball rotation in place?  I see only two possible connections, one I call gear drive (a twist motion induces an adjacent ball in the twist plane to twist in the same (or opposite) direction) and the other I call vortex drive (a ball twist causes an adjacent ball on the twist axis to turn in the same or opposite direction).  Both of these forces could also induce normal twists, for four possible neighbor connections.  Which, or what set, of these neighbor interactions are valid descriptions of how balls move?  And what mathematically is the exact amount of dispersion of twist to neighbors?  Is the field continuous or can discontinuities occur?

Certainly the requirement for continuity is a powerful constraint, allowing discontinuities from the imaginary to any of the real axes, but prohibiting discontinuities between the real axes or in the imaginary direction.

These are the questions I have been pondering a lot.  I have come up with a nice framework but now I have to work out just how the vector field neighbor connection must happen before I make any further progress.

Agemoz

Fine Structure Constant Hunting

May 1, 2012

Built into current QED (quantum electrodynamics) is the QFT process of pertubative accumulation of virtual photons.  Each possible virtual photon term is assigned a unitless  probability (actually,  probability amplitude capable of interfering with other terms)  of occurrence called the fine structure constant.   Searching for the reason for the value of this constant is a legendary pursuit for physicists, Feynman made the famous comment about it:

It’s one of the greatest damn mysteries of physics: a magic number that comes to us with no understanding by man.

All kinds of research, study, and guesses have gone into trying to figure out why this number is what it is, and I can guarantee you this is a fruitless pursuit.  Think about it, there have been maybe millions of physicists over the last 100 years, the vast majority with IQs well north of 150, all putting varying amounts of effort into trying to figure out where this number comes from.  If none of them have come up with the answer yet, which they haven’t, the odds of you or I stumbling across it is certifiably close to zero.  That is an effort that I consider a waste of time. For one thing, this is a no-numerology physics blog.

One bad trait of many amateur physicists is to theorize answers by mixing up various constants such as pi, e, square roots, etc, etc and miraculously come up with numbers that explain everything.  Note, no knowledge required of the underlying science–just mix up numbers until something miraculous happens, you get a match to an actual observed physical constant (well, so close, anyway, and future work will explain the discrepancy.  Yeah… riiiight).  Then you go out and proselytize your Nobel prize winning theory, to the annoyance of everyone that sees what you did.  This is also called Easter egg hunting, and really is a waste of time.  Don’t do that.  Hopefully you will never ever see me do that.

Nevertheless, physicists are desperate for reasons why the fine structure constant is what it is, and all kinds of thought, analysis, and yes, numerology, have already gone into trying to find where it comes from.  Why do I insert a post about it in the midst of my step by step procedure of working out the role of unitary twist field theory in the electron-photon interaction?  Because, as I mentioned, the fine structure constant is fundamental to mathematically iterating terms in the QFT solution to this particular QED problem.  It stands to reason that an underlying theory would have a lot to say about why the fine structure constant is what it is.

Unfortunately, it’s clear to me that it’s not going to be that simple.  Pertubative QFT is exactly analogous to the term factors in a Taylor series.  You can create amazing functions from a polynomial with the right coefficients–I remember when I was much younger being totally amazed that you could create trigonometric functions from a simple sum of factors.  Just looking at the coefficients really tells you very little about what function is going to result, and that is exactly true in pertubative QFT.  The fine structure constant is your coefficient multiplier, but what we don’t have is the actual analytic function.  The fine structure constant has a large number of ways to appear in interaction computation, but the direct connection to real physics is really somewhat abstract.  For example, suppose I could geometrically explain the ratio of the charge potential energy between two electrons separated by distance d with the energy of a photon who’s energy is defined by that same distance d, which is defined as the fine structure constant value.  But I can’t.  The fact that it takes 137 of these photons (or equivalantly a photon with 1/137 the distance) to hold together two electrons to the same distance is not physically or geometrically interesting, it is a numerology thing.  Pursuing geometric reasons for the 137 is a lost cause, because the fine structure constant is a coefficient multiplier, an artifact of pertubative construction.

Nevertheless, I do see a way that the fine structure constant might be derived from the unitary twist field theory.  Don’t hold your breath–obviously a low IQ type like me isn’t likely to come up with any real discovery here.  Even so, I should follow through.  Here’s the deal.  Take that picture in the previous post, the second “Figure 2” that shows the effect of bending the imaginary vector.  I need to go back and edit that diagram, the circle ring is the twist ring electron, and fix that to be fig 3.  Anyway, the force on that electron ring is going to be determined by one of two things–the amount of the bend or the difference delta of the bend on one side of the ring versus the other.  The bend will gradually straighten out the further you get from a remote charge.   This computation will give the motion and hence the inertia of any self-contained twist (only the linear twist, the photon, will experience no net force from an imaginary bend).  This will be a difficult computation to do directly–but remember we must have gauge invariance, which leads to my discovery that a ring with an imaginary bend must have a frame of reference with no bend.  Find this frame of reference, and you’ve found the motion of the electron ring in the first frame of reference–a much easier computation to do.  This is real analysis and logical thinking, I think–not Easter egg hunting.

Agemoz

The Quandary of Attraction, Part III

April 26, 2012

I worked quite a bit with figuring out a way to make twists work in the electron-photon case.  I had excluded partial twist bending as a means of propagating the charge field of a remote charged particle, but this really troubles me, because it is a very clean way of representing virtual photons.  Virtual photons actually come from QFT as partial terms of a total expression of interaction probabilities.  They are a mathematical artifact only in the sense that there are constraints on the sum of all virtual interaction probabilities.  Even though they aren’t really “real”, they derive from real field behavior in aggregate, so there must be some physical analog if I’m going to construct an underlying theory.  Partial twists were perfect–since they have to return to the background direction without executing a full twist (otherwise there would be a real photon there), and since they have a linearity property where multiple charge sources can create a sum of bends, there was a good match for the QFT virtual particle artifice.  Such a bend will have an effect on a remote ring (charged particle) caused by the delta bend from one side of the particle to the other.  Here’s a simple picture that illustrates what I am thinking:

Problem with bend solution to Unitary Twist Field theory in a charged particle array

If bends are correct, there’s a whole bunch of problems that show up, the Figure 2 shows one of them–it doesn’t work correctly if a third charged particle is added at an angle to the line of the first and second particles.  In addition, the bends aren’t even correct if the field due to the receiving particle is added in.  It just doesn’t work, and so I decided to throw in the towel and say that bends are not virtual particles and there is no option but to only consider full twists for real photons.  The twist model won’t have a QFT equivalant mapping with virtual photons.  Oh, I really don’t like that.  I also really don’t like the background vector in R3 in order to enforce quantization–I see a large number of problems creating such a system that is gauge invariant (what I mean by that is that the system’s behavior is independent of absolute position, rotation, and Lorentz invariant to frames of reference in space-time).

It occurred to me that all these problems could be solved if we put the background vector direction orthogonal to our R3 space.  Not really a 4th dimension because nothing will exist there, but a 4th dimension direction to point.  I think multi-particle bends will correctly sum to create an electrostatic or magnetic field that QFT would generate with virtual photons, and now there is no preferred angle in R3 that would ruin gauge invariance.

I have to think about this a lot more because now there may be too many degrees of freedom for twists.  The work on circular polarization for photons wont be affected since the background direction just provides a reference for the available twists.  But the ring solution might end up with too many possibilities, I have to figure that out.  But I see a lot of promise in this adjustment to Unitary Twist Field theory–I think it is a closer match to what we know QFT and EM fields will do, yet still preserves the quantization and special relativity behavior that makes the Unitary Twist Field idea so compelling to me.

Agemoz

The Quandary of Attraction, part II

April 23, 2012

I mentioned previously that the attraction between two opposite charged particles appears to present a conservation of momentum problem if electrostatic forces are mediated by photon exchanges.  Related to this issue is the question of what makes a photon a carrier of a magnetic field versus an electrostatic field. QFT specifies that this happens because the field (sea of electron-positron pairs/virtual particle terms) absorbs the conservation loss, but as far as I can find, does not try to answer the second question.

Part of the difficulty here is that attempting to apply classical thinking to a QFT problem doesn’t work very often.  Virtual photons in QFT do not meet the same momentum conservation rules we get in classical physics, either in direction or quantity.

But, since I hypothesize an underlying vector field structure, it is interesting to pursue how the Unitary Twist Field theory would deal with these issues.

I ruled out any scheme involving local bending of the background field vector.  This would be an appealing solution, easy to compute, and easy to see how different frames of reference might alter the electrostatic or magnetic nature.  But this doesn’t work because you must assume any possible orientation of the electron ring, and it is easy to show that a local bend would be different for two receiving particles at equal distance but different angles from a source particle.  I worked with this for a while and found there is no way that the attraction due to a delta bend would be consistently the same for all particle orientations.

The only alternative is to assume that the field consists of twists, either full or partial returning back to the background state (photons and virtual photons respectively).  Why does an unmoving electron not move in a magnetic field but is attracted/repelled in an electrostatic field?  QFT answers this simply by assuming that the electrostatic and magnetic components of the field are quantized and meet gauge invariance.   My understanding of QFT is that asking if a single photon is magnetic or electrostatic is not a valid question–the field is quantized in both magnetic and electrostatic components, composed of virtual photon terms that don’t have a classical physical analog.

I suppose the unitary twist field theory is yet another classical attempt.  Nevertheless, it’s an interesting pursuit for me, mostly because of the geometrical E=hv quantization and special relativity built in to the theory.  It seems to me that QFT doesn’t have that connection, and thus is not going to help derive what makes the particle zoo.

This underlying vector field does not have two field components real and imaginary, just one real.  Even if this unitary twist field thing is bogus, it points to an interesting thought.  If  our desired theory (QFT or unitary twist field) wants to distinguish between a magnetic field or an electrostatic field using photons, we only have one degree of freedom available to do the distinction–circular polarization.  What if polarization of photons was what made the field electrostatic or magnetic?

An objection immediately comes to mind that a light polarizer would then be able to create electrostatic or magnetic fields, which we know doesn’t happen.  But I think that’s because fields are made of much lower energy photons.  Fourier decomposition of a field would show the vast majority of frequency components would be far lower even when the field energy is very high–in the radio frequency range.  Polarizing sheets consist of photon absorbing/retransmitting atoms and would be constrained to available band jumps–I’m fairly certain that there is no practical way to construct a polarizer at the very low frequencies required–even the highest orbitals of heavy atoms are still going to be way too fast.

If polarization is the distinguishing factor, then it poses some interesting constructions for the unitary twist field approach.  If it is not, then the magnetic versus electrostatic can only be an aggregate photon array behavior, which seems would have to be wrong–a thought experiment can be constructed that should disprove that idea.  Quantization of a very distant charged particle effect, where the quantized field particle probability rate is slow enough to be measurable, could not show the distinction in any given time interval.

Supposing polarization is the intrinsic distinction in single photons.  Unitary twist fields have two types of linear twist vectors, those lying in the plane common to the background vector and normal to the direction of travel, and those lying in the plane common to the background vector and parallel to the direction of travel.  (There is a degenerate case where the direction of travel is the same as the direction of the background state, but this case still has circular polarization because there are now two twist vectors in the planes with a common background vector and a pair of orthogonal normal vectors).

Since static particles are affected by one twist type (inline or normal) and not the other, and moving particles are affected by the other twist type, one proposal would be that the particle experiences only the effect of one of the twist types relative to the path of motion and the background vector.  For example, if the particle is not moving, only twists normal to the direction of travel will alter the internal field of the receiving particle such that it moves closer or further away (attraction or repulsion).  A problem with this approach is the degenerate case, which must have both and eletrostatic and magnetic response, but both twist vectors will be inline twists, there is no twist normal to the background state that will include the background state vector.

More thinking to come…

Agemoz

Why Static Twists Cannot Be Stable

March 11, 2012

Some really exciting results from my simulation results of the Twist hypothesis!  I have been simulating this for a while now, to recap:  The twist theory posits (among many other things) that underlying the photon elements of an electromagnetic field is a unitary twist field.  This unitary twist field is a direct (or mapped) result of the E=hv quantization of all particles.  Photons are linear twists of the unitary field, whereas massive particles are self-contained twists, such as a ring for electrons/positrons.  Quarks and other massive particles are posited to be other geometrical constructions.  If this model is studied, one very interesting result is the correct representation of the special relativity space and time Lorentz transforms, where linear twists travel at a maximum, but constant, speed in all frames of reference–but all self-contained structures such as the electron ring must obey time and spatial dilation.  The model correctly derives the beta dilation factor.

As a result of this work, I have put together a simulator to model the twist behavior in the hopes of verifying the existing corollaries to the twist theory, and also to see if more complex geometrical structures could be determined (say for quarks, although it is certain that the strong force would have to be accounted for somehow).

One of the results of the theory seemed to imply that a static linear twist should be possible, yet static photons do not exist in nature.  I’m very excited to have the simulator show its first demonstration of why this happens!  When I set up the simulator to do a static linear twist, I discovered (see previous posts) that the twist always self destructed by dissipation, and it took a lot of work to find out why.  This will be easiest to show with this diagram:

Why the static twist dissipates. Note the narrowing of the twist from the outside in.

The premise of the unitary twist theory is that E=hv particles can only be quantized geometrically in a continuous field system if particles exist in a localized background field direction have a fixed amplitude twist.  The fixed amplitude (different from an EM field that allows any magnitude) prevents the quantized entity from dissipating, and the background direction enforces quantization of the twist–partial twists (virtual particles) are not stable and fall back to the background direction, whereas full twists are topologically stable since the ends are tied down to the background direction such that the twist cannot unwind.  The frequency of the twist is determined by the twist width, shown in the diagram as omega.

Iteration of the linear twist in the simulation showed that, even though the unitary twist magnitude could not dissipate, the twist would vanish (see previous post pictures).  At first, I thought this was an artifact of the lattice form of the simulation, I represented a continuous twist with a stepwise model.  Further sims and analysis showed that the behavior was not a lattice effect (although it definitely interfered with the correct model behavior).  As this diagram shows, I was able to demonstrate that a static twist cannot exist, it is not stable.  What happens is that the twist width cannot be preserved over time because the ends experience normalizing forces to the background.  This process, demonstrated in the simulation, ultimately causes the particle to approach a delta function, at which point the simulation twist model gets a single lattice node and eliminates it.

It would be a valid statement to say that the sim does not correctly model what happens at that final stage, but there’s no question in my mind of the validity of the narrowing of the twist width.  There is only one way that the linear twist can be stable–if the light cones of each twist element are out of range of each other.  This can only happen if the twist elements are moving at speed c.

I was disappointed at first, I didn’t have a working model of the twist field.  But I didn’t see that the sim had handed me my first victory–the explanation of why there are no static photons.

Agemoz