Posts Tagged ‘quantum theory’

Principle of Replication and the Particle Zoo

June 27, 2014

I am continuing to develop the new twist simulation, and hope to get first runs maybe in the next several weeks or months.  It’s been a good exercise because it has forced me to be very clear and explicit about how the model works.  To paraphrase Feynman very loosely, “the truth does not lie”–I can’t just make the theory work just because I want it to.  But the exercise has been good because it’s clarified some important concepts that are distributed all throughout this blog, and thus a casual reader is going to have a very difficult time figuring out what I am talking about and whether there’s any real substance to what I’m thinking.  While there is a *lot* of thinking behind this approach, here are the fundamental concepts that are driving how this simulation is being built:

The twist field concept starts with E=hv for all particles, and this is a statement of quantization.  For any given frequency, there is only one possible energy.  If we assume a continuous field, the simplest geometrical model of this is a full twist in a field of orientations.  E=hv implies no magnitude to the field, you can imagine a field of orientable dots within a background state direction–quantization results when only a complete rotation is permitted, thus implying the background default direction that all twists must return to.

The second concept is a duality–if there is a vast field of identical particles, say electrons, the dual of exact replication is a corresponding degree of simplicity.  While not a proof, the reason I call simplicity the dual of replication is because the number of rules required to achieve massive repeatability has to withstand preservation of particles in every possible physical environment from the nearly static state–say, a Milliken droplet electron all the way to electrons in a black hole jet.  The fewer the rules, the fewer environments that could break them.

The third concept is to realize causality doesn’t hold for wave phase in the twist model.  Dr. Bell proved that quantum entanglement means that basic Standard Model quantum particles cannot have internal structure if causality applies to every aspect of nature.  The twist model says that waves forming a particle are group waves–a change in phase in a wave component is instantaneous across the entire wave–but the rate of change of this phase is what allows the group wave particle to move, and this rate of change is what limits particle velocity to the speed of light.  This thus allows particles to interfere instantaneously, but the particle itself must move causally.  Only this way can a workable geometry for quantum entanglement, two-slit experiments, and so on be formed.

Within these constraints the twist model has emerged in my thinking.  A field twist can curve into stable  loops based on standard EM theory and the background state quantization principle.  A particle zoo will emerge because of a balance of two forces, one of which is electrostatic (1/r*2, or central force) and the other is electromagnetic (1/r*3).  When a twist curve approaches another twist curve, the magnetic (1/r*3) repulsion dominates, but when two parts of a curve (or separate curves) move away from each other, the electrostatic attractive force dominates.  Such a system has two easily identifiable stable states, the linear twist and the ring.  However there are many more, as can be easily seen when you realize that twist curves cannot intersect due to the 1/r*3 repulsion force dominating as curves approach.  Linked rings, knots, braids all become possible and stable, and a system of mapping to particle zoo members becomes available.

Why do I claim balancing 1/r*2 and 1/r*3 forces exist?  Because in a twist ring or other closed loop geometries, there are a minimum of two twists–the twist about the axis /center of the ring, and the twist about the path of the ring–imagine the linear twist folded into a circle.  Simple Lorentz force rules will derive the two (or more, for complex particle assemblies such as knots and linked rings) interacting forces.  Each point’s net force is computed as a sum of path forces multiplied by the phase of the wave on that path–you can see the resemblance to the Feynman path integrals of quantum mechanics.

Soon I’ll show some pictures of the sim results.

Hopefully that gives a clear summary of why I am taking this study in the directions I have proposed.

Agemoz

Yang-Mills Mass Gap

January 12, 2014

My study of vector field twists has led to the discovery of stable continuous field entities as described in the previous post (Dec 29th A Particle Zoo!).  I’ve categorized the available types of closed and open solutions into three broad groups, linear, knots, and links.  There’s also the set of linked knots as a composite solution set.  I am now trying to write a specialized simulator that will attempt quantitative characterization of these solutions–a tough problem requiring integration over a curve for each point in the curve–even though the topology has to be stable (up to an energy trigger point where the particle is annhiliated), there’s a lot of degrees of freedom and the LaGrange methodology for these cases appears to be far too complex to offer analytic resolution.  While the underlying basis and geometry is significantly different, the problem of analysis should be identical to the various string theory proposals that have been around for a while.  The difference primarily comes from working in R3+T rather that the multiple new dimensions postulated in string theory.  In addition, string theory attempts to reconcile with gravity, whereas the field twist theory is just trying to create an underlying geometry for QFT.

One thing that I have come across in my reading recently is the inclusion of the mass gap problem in one of the seven millenial problems.  This experimentally verified issue, in my words, is the discovery of an energy gap in the strong force interaction in quark compositions.  There is no known basis for the non-linear separation energy behavior between bound quarks or between quark sets (protons and neutrons in a nucleus).  Dramatically unlike central quadratic fields such as electromagnetic and gravitational fields, this force is non-existent up to a limit point, and then asymptotically grows, enforcing the bound quark state.  As far as we know, this means free quarks cannot exist.  As I mentioned, the observation of this behavior in the strong force is labeled the Yang-Mills Mass Gap, since the energy delta shows up as a mass quantization.

As I categorized the available stable twist configurations in the twist field theory, it was an easy conclusion to think that the mass gap could readily be modelled by the group of solutions I call links.  For example, the simplest configuration in this group is two linked rings.  If each of these were models of a quark, I can readily imaging being able to apply translational or moment forces to one of the rings relative to the other with nearly no work done, no energy expended.  But as soon as the ring twist nears the other ring twist, the repulsion factor (see previous post) would escalate to the energy of the particle, and that state would acquire a potential energy to revert.  This potential energy would become a component of the measurable mass of the quark.

The other question that needs to be addressed is why are some particles timewise stable and others not, and what makes the difference.  The difference between the knot solutions and the link solutions is actually somewhat minor since topologically knots are the one-twist degenerate case of links.  However, the moment of the knot cases is fairly complex and I can imagine the energy of the configuration could approach the particle energy and thus self-destruct.  The linear cases (eg, photons, possibly neutrinos as a three way linear braid) have no path to self destruct to, nor does the various ring cases (electron/positrons, quark compositions).  All the remaining cases have entwining configurations that should have substantial moment energies that likely would exceed the twist energy (rate of twisting in time) and break apart after varying amounts of time.

The other interesting realization is the fact that some of these knot combinations could have symmetry violations and might provide a geometrical understanding of parity and chirality.

One thing is for sure–the current understanding I have of the twist field theory has opened up a vast vein of potentially interesting hypothetical particle models that may translate to a better understanding of real-world particle infrastructure.

Agemoz

A Particle Zoo!

December 29, 2013

After that last discovery, described in the previous post, I got to a point where I wondered what I wanted to do next.  It ended the need in my mind to pursue the scientific focus described in this blog–I had thought I could somehow get closer to God by better understanding how this existence worked.  But then came the real discovery that as far as I could see, it’s turtles all the way down, and my thinking wasn’t going to get me where I wanted to go.

So I stopped my simulation work, sat back and wondered what’s next for me.  It’s been maybe 6 months now, and while I still think I was right, I miss the fun of thinking about questions like why is there a particle zoo and whether a continuous field could form such a zoo.  While I don’t sense the urgency of the study anymore, I do think about the problem, and in the recent past have made two discoveries.

One was finding a qualitative description of the math required to produce the field vector twist I needed for my Unitary Field Twist theory, and the second was a way to find the available solutions.  The second discovery was major–it allowed me to conceptualize geometrically how to set up simulations for verification.  The problem with working with continuous vector fields required by the twist theory is that solutions are described by differential equations that are probably impossible to solve analytically.  Sometimes new insights are found by creating new tools to handle difficult-to-solve problems, and to that end I created several simulation environments to attempt numerical computations of the twist field.  Up to now, though, this didn’t help finding the available solutions.

What did help was realizing that the base form of the solutions produce stable solutions when observing the 1/r(t)^3 = 1/r(t)^2 relation–the relation that develops from the vector field’s twist-to-transformation ratio.  Maxwell’s field equations observe this, but as we all know, this is not sufficient to produce stable particles out of a continuous field, and thus cannot produce quantization.  The E=hv relation for all particles led me to the idea that if particles were represented by field twists to some background state direction, either linear (eg, photons) or closed loops, vector field behavior would become quantized.  I added a background state to this field that assigns a lowest energy state depending on the deviation from this background state.  The greater the twist, the lower the tendency to flip back to the background state.  Now a full twist will be stable, and linear twists will have any possible frequency, whereas closed loops will have restricted (quantized) possibilities based on the geometry of the loop.

For a long time I was stuck here because I could see no way to derive any solutions other than the linear solution and the ring twist, which I assigned to photons and electrons.  I did a lot of work here to show correct relativistic behavior of both, and found a correct mass and number of spin states for the electron/positron, found at least one way that charge attraction and repulsion could be geometrically explained, found valid Heisenberg uncertainty, was able to show how the loop would constrain to a maximum velocity for both photons and electrons (speed of light), and so on–many other discoveries that seemed to point to the validity of the twist field approach.

But one thing has always been a problem as I’ve worked on all this–an underlying geometrical model that adds quantization to a continuous field must explain the particle zoo.  I’ve been unable to analytically or iteratively find any other stable solutions.  I needed a guide–some methodology that would point to other solutions, other particles.  The second discovery has achieved this–the realization that this twist field theory does not permit “crossing the streams”.  The twists of any particle cannot cross because the 1/r(t)^3 repulsion factor will grow exponentially faster than any available attraction force as twists approach each other.  I very suddenly realized this will constrain available solutions geometrically.  This means that any loop system, connected or not, will be a valid solution as long as they are topologically unique in R3.  Immediately I realized that this means that links and knots and linked knots are all valid solutions, and that there are an infinite number of these.  And I immediately saw that this solution set has no morphology paths–unlike electrons about an atom, you cannot pump in energy and change the state.  We know experimentally that shooting high energy photons at a free electron will not alter the electron, and correspondingly, shooting photons at a ring or link or knot will not transform the particle–the twists cannot be crossed before destroying the particle.  In addition, this discovery suggests a geometrical solution to the experimentally observed strong force behavior.  Linked loops modelling quarks will permit some internal stretching but never breaking of the loop, thus could represent the strong force behavior when trying to separate quarks.  And, once enough energy were available to break apart quarks, the resulting particles could not form free quarks because these now become topologically equivalent to electrons.

My next step is to categorize the valid particle solutions and to quantify the twist field solutions, probably by iterative methods, and hopefully eventually by analytic methods.

There’s no question in my mind, though–I’ve found a particle zoo in the twist field theory.  The big question now is does it have any connection to reality…

Agemoz

Mathematics, Chaos, and God

August 25, 2013

I have made the greatest discovery of my life.

You see, I have spent the majority of my life searching for the mind of God, and I did this by observing the world around me, reading about it, and trying to draw conclusions unfettered by wishful or unsupportable thinking.  I thought that by understanding physics, in particular the underlying geometry of quantum field theory coupled with special relativity, that I might see better how God works and thinks.  Along the way, I came to the conclusion that this Unitary Twist Field idea made a lot of sense, and spent a lot of time trying to show how it might work.  I wrote several simulators and tried to refine the ideas sufficiently–and maintain a Feynman skepticism whether they were workable or just simply wrong.

I still maintain that the main idea is probably right–and was beginning to come up with an experiment to induce a linear twist field.  This turns out to be extremely hard, because the timing of the twist has to move at the speed of light–the twist generator has to be both very small and very high frequency.  I envisioned sort of a prefetch driver mechanism that would charge plates in a cylinder in such a way that the field phase was anticipated.  The assumption is that the rotating field would induce the magnetic portion of the twist and that detectable emission would occur.  The reason I think nobody has built something like this before is that the phase timing of the plates has to be such that the twist propagates at speed c–you cannot make a propagating circuit to do this because electrons will travel down wires at less than the speed of light.  You must design a circuit at multi-gigaHertz frequencies that adds phase to take the slower electron path and cancel it out.  Such a configuration cannot occur in nature or even in antennas of any design.  I have sufficient electronics knowledge that I know how to do this–but it still would be a difficult undertaking.

I was starting down the path of doing this when I watched the movie Pi.  Kind of nutty, but still a good movie, I thought.  A mentally disturbed mathematician uncovers a sequence of numbers that forms the unspeakable name of God and goes crazy uncovering the implications.  He reaches peace only by expelling (literally) the knowledge from his mind.  This movie gets a bunch of things wrong, but the principle is a great one.  First, it claims mathematics is the language of all nature, and second, all nature is based/driven by patterns–wrong on both counts.  Nature is the profound mixture of mathematics and chaos–not everything in it is well described by the language of mathematics.  As a corollary, patterns are only part of the game, intrinsic randomness also drives the behaviors we see in nature.

But the point is still valid–while the “answer” wont be a 216 digit number, the mind of God could be said to take a form that could reside as an abstraction inside a human mind.  That’s what I’ve been doing for about 25 years or so–trying to find that abstraction, or more likely some new portion of it.  Then, the meaning of my life gets some resolution as I get closer to knowing God.

I tried to envision what would happen, like in the movie, if some human succeeds.  Does that become a humanity singularity that is eventually inevitable?  Is that the destiny of humanity–probably not me, but someone will eventually find that key?  I woke up this morning and realized I had my answer, a life changing answer.  Just waking up is a great time to do your mightiest thinking–that emerging consciousness is cleared and refreshed.  I remember doing a lot of thinking about death and what it really means about us and God, and one day walking in a cemetary suddenly realizing “God Is Not Here”.  Answers will not be found in the study of dying–it’s just the point where our thinking stops.

This morning, I woke up and realized that is also true of my study of physics.  God Is Not Here.  Because my leading hypothesis of existence is that there is a way for something to emerge from an infinity nothing (search for my previous posts on scale-less systems and the resulting something-from-nothing process), discovering another underlying structure to quantum field theory will NOT get me closer to God–He is not there.  He might be involved somehow at a higher level, but the creation of existence from nothing is a series of steps that eventually results in the Big Bang and then the evolution to our existence.  My discovery is this:  the discoveries of physics is the process of discovering those steps, but does not point us to God (at least directly).

I have had my life profoundly turned on its head, for the search I’ve so diligently pursued and tried to do as rigorously as I could has come to an end–there is no point other than the pleasure of figuring something out.  God Is Not Here.

Of course, new questions arise from the ashes–then, where is God?  What do I do now?

Agemoz

I

Atomic Orbital Correction

July 31, 2013

Oops, an error on the previous post.  I said the strong force is responsible for the repulsion of an atom’s orbital electrons from the nucleus, but of course that’s not right, it’s reponsible for the attraction binding the nucleus particles together.  By quantum mechanics, virtual photons in the EM field provide the electron attraction to the nucleus, and the the electron momentum prevents annhiliation.  In the Twist Theory approach, twists do mediate this interchange, but in the form of linear twist photons–no big surprise, here Twist Field theory does the same thing as quantum theory.  The trouble, though is why is the frequency of the photon what it is?  It would help vindicate the Twist Field theory if there was a plausable twist explanation, but I don’t see it.  As I mentioned in the previous post, the kinetic energy of an orbital is far smaller than the rest energy (and hence wavelength of its twist) of the electron–and the orbital size is correspondingly far larger by 7 or so orders of magnitude.  The twist field could maybe explain the energy of an electron, but right now I don’t see how it could explain the quantization of the orbital energy jumps.  The Rydberg Equation should give a clue with the 1/r^2 factor, but I don’t see a way for this to work geometrically yet.

Agemoz

Sim Results Show Wrong Acceleration Factor

July 18, 2013

Well, it looked promising–qualitatively, it all added up, and everything behaved as expected.  But it’s a “close, but no cigar”.   The acceleration at each point should be proportional to 1/r^2, but after a large number of runs, it’s pretty clearly some other proportionality factor.  I’ve got some more checking to do, but looks like I don’t have the right animal here.  One thing is clear though–this model, which attracts and repels, is the first one that shows qualitatively correct behavior.  If twist rings have mass due to the twist distortion, this is the first model that shows it, even if the mass can’t be right.

So, I stepped back and ran through the list of assumptions, and see some flaws that might guide me to a better solution.  Many theories die in the real world because of the glossy effect, as in, I glossed over that and will deal with it later, it’s not a major problem.  I unintentially glossed over some problems with the model, and in retrospect I should have addressed them from the get-go.

First, twist rings (as modelled in my simulation) have a real planar component, but twist through an imaginary axis.  The twist acts as an E field in the real space and as a magnetic field in the imaginary space.  The current hypothesis is that the loop experiences different field magnitudes from the source particle, and this causes a curvature change that varies around the loop.  The part of the loop that is further away will experience less curvature, the closer part more curvature (curvature is a function of the strength of the magnetic field from the source particle).  This simulation shows that if that is the model, you do indeed get an acceleration of the ring proportionate to the distance from the source particle–and the acceleration is toward the source particle–attraction!  If you switch the field to the negative, you get the same acceleration away–repulsion.  So far, so good, and the sim results made me think–I’m on the right track!  I still think I might be on the right track, but the destination is further away than I thought.

First, as I mentioned, the sim results seem to show pretty clearly that the acceleration is not the right proportionality (1/r^2).  That might just be a computational problem or just indicate the model needs some adjustments.  But there are some things being glossed over here.  First, while the model works regardless of how many particles act as a source, there is always one orientation where every point on the ring is equadistant from the source particle–in this case, there is no variation in curvature.  The particle would have to act differently depending on orientation.  It could be argued that the particle ring will always have its moment line up with the source field, and so this orientation will never happen–fine, but what happens when you have two source particles at different locations?  The line-up becomes impossible.  OK, let’s suppose some sort of quantum dual-state for the ring–and I say, I suppose that is possible, some kind of sum of all twist rings, or maybe a coherence emerges depending on where the source particles are, but then we no longer have a twist ring.  In addition, the theory fixes and patches are building up on patches, and I’d rather try some simpler solutions before coming back to this one.  The orientation problem is a familiar one–it shoots down a lot of geometrical solutions, including the old charge-loop idea.

Here’s another issue:  I make the assumption that there is a “near side” and a “far side”, which has the orientation problem I just mentioned–a corollary to that is that it also could get us in trouble as soon as relativity comes in play since near and far are not absolute properties in a relativistic situation).  I then get an attraction by assuming the field is weaker on the far side and thus there is less curvature.  The sim shows clearly the repulsion acceleration away from the source when this is done.  Then I cavalierly negated the field and Lo! I got attraction, just like I expected.  But I thought about this, and realized this doesn’t make physical sense–a case of applying a mathematical variation without thinking.  This would mean that the field caused *greater* curvature when the twist point is further away (the far side).  Uhh, that does not compute…

While not completely conclusive, this analysis points out first, that a solution cannot depend on source field magnitude variation alone within the path of the ring.  The equidistant ring orientation requires (more correctly, “just about” requires, notwithstanding some of the alternatives I just mentioned) that the solution work even if all neighborhood points on the ring have exactly the same source field magnitude.  In addition, there’s another more subtle implication.  The direction a particle is going to move has to come from a field vector–this motion cannot result from a potential function (a scalar)  because within the neighborhood of the ring, the correct acceleration must occur even if the potential function appears constant over the range of the twist ring.

This is actually a pretty severe constraint.  In order for a twist ring to move according to multiple source particles, a vector sum has to be available in the neighborhood of the twist ring and has to be constant in that neighborhood.  The twist ring must move either toward or away from this vector sum direction, and the acceleration must be proportionate to the magnitude of the vector sum.  Our only saving grace is the fact that this vector sum is not necessarily required to lie in R3, possible I3–but a common scalar imaginary field of the current version of the twist theory is unlikely to hold up.

Is the twist field theory in danger of going extinct even in my mind?  Well, yes, there’s always that possibility.  For one thing, I am assuming there will be a geometrical solution, and ignoring some evidence that the twist ring and other particles have to have a more ghostly (coherent linear sum of probabilities type of solution we see in quantum mechanics).  For another, my old arguments about field discontinuities pop up whenever you have a twist field, there’s still an unresolved issue there.

But, the driving force behind the twist field theory is E=hv.  A full twist in a background state is the only geometrical way to get this quantization in R3 without adding more dimensions–dimensions that we have zero evidence for.   Partial twists, reverting back to the background state, are a nice mechanism for virtual particle summations.  We do get the Lorentz transform equations for any closed loop solution such as the twist theory  if the time to traverse the loop is a clock for the particle.  And–the sim did show qualitative behavior.  Fine tuning may still get me where I want to go.

Agemoz

Gaussian Wave Packets

February 20, 2013

It’s been a little while since I’ve posted, mostly because I have an unrelated big project going on, so I’ve been focusing on trying to get that out the door.  And, I’m working on getting the twist ring inertial math to work, a laborious project since the Lagrangian equation of motion has too many variables for solving.  I’m trying to find ways to simplify.  In addition, I also have an iterative sim of the inertial response ready to go but haven’t had time to set it up and run it.  Hopefully with the other project almost done I’ll get to it this weekend.

One thought I’ve had in the meantime–many  quantum mechanics exercises involve modeling a photon with a wave packet that is described as having the Gaussian integral form.  The most basic variation of this form (Integral[Exp[-x^2]]) is a bell shaped curve with amplitude 1 at zero and asymptotically goes to zero at +/- infinity.  I’ve had lots of lectures where an oscillating squiggle is used to represent the magnitude of the quantized photon wave packet.

A very interesting thought occurred to me is that this integral is a great representation of the unitary twist version of a photon packet.  A one dimensional magnitude projection of a twist from the Unitary Twist Field Theory would be represented exactly by a Gaussian curve, and if we use a complex value r to completely represent the twist function, then the Gaussian integral becomes Integral[Exp[-r^2]] and then this can be interpreted as a working model of twists–and thus support the notion that the twist theory has a well proven basis in the math of quantum mechanics.  Do I buy that, or should my skepticism meter be dinging my thinking process?  Right now, the idea looks pretty workable–it seems pretty clear that the r form clearly would represent a twist as well as a Gaussian envelope packet over a frequency of oscillation of E and B fields–making the twist theory a viable alternative to the magnitude constrained wave packet interpretation.  For the twist theory to be acceptable, there has to be a path to the math of quantum mechanics, and I think I see how this could happen.

Agemoz

Noncausal Interactions, part II

December 11, 2012

I want to clarify the previous posting on how I resolve the noncausal paradox in unitary twist field theory–after all, this is the heart of the current struggle to create a quantum gravity theory.  Here, I’m continuing on from the previous post, where I laid out the unitary twist field theory approach for quantum interactions.  In there, I classified all particle interactions as either causal physical or noncausal quantum, and quantum interactions fall into many categories, two of which are interference and entanglement.  These two quantum interactions are non-causal, whereas physical interactions are causal–effects of physical interactions cannot go faster than the speed of light.

Many theories have attempted to explain the paradoxes that result from the noncausal quantum interactions, particularly because relativity theory specifies that no particle can exceed the speed of light.  The Copenhagen interpretation, multiple histories, string theories such as M theory, the Pilot wave theory, etc etc all attempt to resolve this issue–but in my research I have never found anyone describe what to me appears to be a simple solution–the group wave approach.

In my previous posting, I described this solution:  If every particle is formed as a Fourier composition of waves, the particle can exist as a group wave.  Individual wave components can propagate at infinite speed, but the group composition is limited to speed c.  This approach separates out particle interactions as having two contributors:  from the composite effect of changing the phase of all wave components (moving the center of the group wave) and the effect of changing the phase of a single fundamental wave component.  If the individual wave components changed, the effect is instantaneous throughout spacetime, but there is a limitation in how quickly the phase of any give wave component can be changed, resulting in a limitation of how quickly a group wave can move.

It’s crucial to understand the difference, because this is the core reason why the paradox resolves.  Another way to say it is that when a change to a wave component is made, the change is instantaneous throughout R3–but the rate of change for any component has a limit.  An analogy would go like this: you have two sheets of transparency paper with a pattern of parallel equally spaced lines printed on it.  If you place each sheet on top of each other at an angle, you will see a moire pattern.  Moving one sheet relative to the other will move the moire pattern at some speed limited by how quickly you moved the sheet.  But note that every printed line on that sheet moved instantaneously relative to every other line on that sheet–instantaneous wave component movement throughout R3.  Note that the interference pattern changes instantaneously, but the actual movement of the moire pattern is a function of how fast the sheets are moved relative to each other–exactly analogous to what we see in real life.  This is the approach that I think has to be used for any quantum gravity theory.

Agemoz

Noncausal interactions in the Unitary Twist Field Theory

December 10, 2012

It’s been a little while since I’ve posted, partly because of my time spent on the completion of a big work project, and partly because of a great deal of thinking before posting again (what a concept!  Something new!).  This blog has traveled through a lot of permutations and implications of the unitary twist field theory.  It starts by assuming that the Standard Model is valid, but then tries to create an underlying geometry for quantization and special relativity.  This twist vector field geometry is based on E=hv, and has worked pretty well–but when we get to entangled particles and other noncausal aspects of quantum theory, I’ve needed to do some new thinking.  While the noncausal construct is easily built on group wave theory (phase information propagates at infinite speed, but group Fourier compositions of waves that make up particles are limited to speed c), there are significant consequences for the theory regarding its view of the dimensional characteristics of the 3D+T construct of our existence.

As I mentioned, the unitary twist field theory starts with E=hv, the statement that every particle is quantized to an intrinsic frequency.  There really is only one way to do this in a continuous system in R3+T:  a twist within a background state vector field.  Twists are topologically stable, starting from the background direction and twisting to the same background direction with an integral turn.  Quantization is achieved because partial turns cannot exist (although virtual particles exist physically as partial turns for a short time before reverting back to the background state).  With this, I have taken many paths–efforts to verify this pet theory could really work.  For example, I tested the assumption of a continuous system–could the field actually be a lattice at some scale.  It cannot for a lot of reasons (and experiments appear to confirm this), especially since quantization scales with frequency, tough to do with a lattice of specific spacing.  Another concern to address with twist field theory occurs because it’s not a given that the frequency in E=hv has any physical interpretation–but quantum theory makes it clear that there is.  Suppose there was no real meaning to the frequency in E=hv–that is, the hv product give units that just happen to match that of frequency.  This can’t be true, because experimentally, all particles quantum interfere at the hvfrequency, an experimental behavior that confirms the physical nature of the frequency component.

So–many paths have been taken, many studies to test the validity of the unitary twist field theory, and within my limits of testing this hypothesis, it seems so far the only workable explanation for quantization.  I believe it doesn’t appear to contradict the Standard Model, and does seem to add a bit to it–an explanation for why we see quantization using a geometrical technique.  And, it has the big advantage of connecting special relativity to quantum mechanics–and I am seeing promising results for a path to get to general releativity.  A lot of work still going on there.

However, my mind has really taken a big chunk of effort toward a more difficult issue for the unitary twist field theory–the non-causality of entangled particles or quantum interference.  Once again, as discussed in previous posts here, the best explanation for this seems pretty straightforward–the particles in unitary twist field theory are twists that act as group waves.  The group wave cluster, a Fourier composition, is limited to light speed (see the wonderful discovery in a previous post that any confined twist system such as the unitarty twist field theory must geometrically exhibit a maximum speed, providing a geometrical reason for the speed of light limit).  However, the phase portion of the component waves is not limited to light speed and resolves the various non-causal dilemmas such as the two-slit experiment, entangled particles, etc, simply and logically without resorting to multiple histories or any of the other complicated attempts to mash noncausality into a causal R3+T construct.

But for me, there is a difficult devil in the details of making this really work.  Light-speed limited group waves with instantaneous phase propagation raises a very important issue.  Through a great deal of thinking, I believe I have shown myself that noncausal interactions which require instantaneous phase propagation, will specify that distance and time be what I call “emergent” concepts–they are not intrinsic to the construction of existence, but emerge–probably as part of the initial Big Bang expansion.  If so, the actual dimensions of space-time are also emergent–and must come from or are based on a system with neither–a zero dimensional dot of some sort of incredibly complex oscillation.  Why do I say this?  Because instantaneous phase propagation, such as entangled particle resolving, must have interactions in local neighborhoods that do not have either a space or time component.  Particles have two types of interactions–ones where two particles have similar values for R3+T (physical interactions), and those that have similar values only in phase space.  In either case, two particles will affect each other.  But how do you get interactions between two particles that aren’t in the same R3+T neighborhood?  Any clever scheme like the Standard Model or unitary twist field theory must answer this all important question.

Physicists are actively trying to get from the Standard Model to this issue (it’s a permutation of the effort to create a quantum gravity theory).  As you would expect, I am trying to get from the unitary twist field theory to this issue.  Standard Model efforts have typically either focused on adding dimensions (multiple histories/dimensions/string theories) or more exotic methods usually making some set of superluminal assumptions.  As mentioned in previous posts, unitary twist field theory has twists that turn about axes in both an R3 and a direction I that is orthogonal to R3 in time.  Note that this I direction does not have any dimensional length–it is simply a vector direction that does not lie in R3.  When I use the unitary twist field theory to show how particles will interact in R3+T, either physically or in entangled or interfering states, those particles would simply have group wave constructs with either a matching set of R3+T values (within some neighborhood epsilon value) or must have matching phase information in the I space.  In other words, normal “nearby”  interactions between two particles happen in a spacetime neighborhood, but quantum interference interactions happen in the I space, the land that Time and Space forgot.  There is no dimensional length here, but phase matches allow interaction as well.  This appears to be a fairly clean way to integrate noncausal behavior into the unitary twist field theory.

Obviously, there are still things to figure out here, but that is currently the most promising path I see for how unitary twist field theory will address the noncausal interaction construct issue.

Agemoz

 

Multiple histories. Baloney!

June 29, 2012

I’ve dug in deep to trying to find out how to make a valid field description that will be implementable in a simulation.  The hope is, just like Conway’s game of life, the right unitary twist field model will show self sustaining quantized behavior that could provide a geometrical basis for the particle zoo.  When you do this, a lot of the baloney in a crackpot idea is forced out into the open–not easy to fool yourself when you have to actually implement an idea.  No surprise that that’s a tough road to follow–what I’ve found is that there are an awful lot of cool ideas that die this way.

I’m still working and thinking, but today I had a great discussion with a friend about a different topic.  Someone was asking me about multiple dimensions and multiple histories, and I told him what I thought–and we had a great time!  You may think physics is a mined out field with not much prospect of exciting work, but discussions like this are why I find this field so fascinating.  There’s not really any chance that I will actually add anything to the base of human knowledge–that’s for university physicists with papers to write.  But we can still think–and that is what I love to do!

Here’s the deal.  Multiple histories and String theory (theories, actually, including M-theory and other multiple dimensional approaches) are two broad classes of theories that try to resolve the non-causality of quantum problems such as entanglement and the dual slit experiment.  In other words, these are theories that try to form a common mathematical basis for general relativity and quantum theory.  These are really the only two approaches that are considered by mainstream physicists–and I don’t think a lot of them really like either approach.  Multiple histories, the idea that all possible alternatives to a triggering event  exist, and that observation resolves the alternatives to a single outcome without violating causality, and multiple dimension theories, which remove causality by providing a near zero length alternative path (via an additional set of dimensions) both have serious problems.  I have no doubt that the history of physics is full of fiery debate about which approach works and is real.

There’s no debate in my mind, though, I think they both severely violate the keep-it-simple-stupid rule–because I think there’s a far better answer.  Causality is a property of particles, massive or massless (eg, photons).  Quantum entanglement and non-causal interference is a property of wave phase.  A simple answer is that the Fourier composition of a collection of group waves is limited in velocity (to c), but the phase information propagates at infinite speed.  The phase information gets to the target (observation point) instantly, but the actual particle takes a while to arrive.  There’s a lot of details to this approach that I won’t cover in this post, but hopefully that is enough for you to get the gist.  No piling on of dimensions, no absurd multiple copies of the universe weaving in and out of observer views (do we have to include all possible observer outcomes as a set of histories–but then just where does it resolve to one observed outcome…. etc).

So my friend asks, if this is a real option, why isn’t presented and considered in the literature or in pop physics books and all?  Well, there’s an excellent chance that this idea *was* considered back in the early quantum theory days and rejected for obvious reasons, just not obvious to me.  Unfortunately, the literature only records successes, not failures and the reasons behind the failure–so valuable information and research about why something *wont* work does not get captured for future generations.  Perhaps a future version of the scientific method will evolve that realizes the value of wrong information (properly labeled) and include it with papers describing groundbreaking correct discoveries.

Even though I suspect a real working physicist would have an easy answer why this approach can’t be, I haven’t heard it yet, read of it yet, nor thought of a good reason why this can’t be the right answer–despite having a hopefully skeptical sense that I am unlikely to have a right answer when no one else has found it.  Don’t know what to tell you there, except that this phase/group wave idea seems a far simpler and more logical explanation than adding dimensions or whole universe copies to our existence.  And in any event, thinking about it and having fun discussing it isn’t restricted to university physicists!

Agemoz

PS:  It may look like I’ve left out the Copenhagen interpretation, which says the process of observation causes composite quantum states to resolve (decohere).  Not really–I categorize this interpretation as a variation that falls under the multiple histories category–the composite quantum state vector contains all possible outcomes).

PPS:  And, then you might come back with:  Oh, this looks like the discredited Pilot Wave approach, where there are multiple pieces to the particle and the surrounding part “guides” the particle.  Dr. Bell, who should have won a Nobel before he died, disproved that one by showing there cannot be internal structure explaining entanglement.   My counterpoint:  You are getting warmer, a better objection–but Fourier composition does not mean physical components–the Pilot Wave is not the same as a group wave composition forming a particle.

Then there’s DeBroglie, Bohm, and a whole bunch of others.  I’ll leave you to research the rest of it.  It’s kind of a tired debate now…