Posts Tagged ‘twist theory’

Precursor Field Connection to Quantum Field Theory

November 8, 2016

I’ve done some pretty intense thinking about the precursor field that enables quantized particles to exist (see prior post for a summary of this thought process) via unitary field twists that tend to a background state direction. This field would have to have two types of connections that act like forces in conventional physics: a restoring force to the background direction, and a connecting force to neighborhood field elements. The first force is pretty simple to describe mathematically, although some questions remain about metastability and other issues that I’ll mention in a later post. The second force is the important one. My previous post described several properties for this connection, such as the requirement that the field connection can only affect immediate neighborhood field elements.

The subject that really got me thinking was specifically how one field element influences others. As I mentioned, the effect can’t pass through neighboring elements. It can’t be a physical connection, what I mean by that is you can’t model the connection with some sort of rubber band, otherwise twists could not be possible since twists require a field discontinuity along the twist axis. That means the connection has to act via a form of momentum transfer. An important basis for a field twist has to consist of an element rotation, since no magnitudes exist for field elements (this comes from E=hv quantization, see previous few posts). But just how would this rotation, or change in rotation speed, affect neighboring elements? Would it affect a region or neighborhood, or only one other element? And by how much–would the propagation axis get more of the rotation energy, if so, how much energy do other non-axial regions get, and if there are multiple twists, what is the combined effect? How do you ensure that twist energy is conserved? You can see that trying to describe the second force precisely opens up a huge can of worms

To conserve twist energy so the twist doesn’t dissipate or somehow get amplified in R3, I thought the only obvious possibility is that an element rotation or change of rotation speed would only affect one field element in the direction of propagation. But I realized that if this field is going to underlie the particle/field interactions described by quantum mechanics and quantum field theory, the energy of the twist has to spread to many adjacent field elements in order to describe, for example, quantum interference. I really struggled after realizing that–how is twist conservation going to be enforced if there is a distributed element rotation impact.

Then I had what might be called (chutzpah trigger warning coming 🙂 a breakthrough. I don’t have to figure that out. It’s already described in quantum theory by path integrals–the summation of all possible paths, most of which will cancel out. Quantum Field theory describes how particles interact with an EM field, for example, via the summation of all possible virtual and real particle paths via exchange bosons, for instance, photons. Since quantum field theory describes every interaction as a sum of all possible exchange bosons, and does it while conserving various interaction properties, all this stuff I’m working on could perhaps be simply described as replacing both real and virtual particles of quantum theory with field twists, partial or complete, that tend to rotate to the I dimension direction in R3 + I space (the same space described with the quantum oscillator model) of my twist theory hypothesis.

I now have to continue to process and think about this revelation–can all this thinking I’ve been doing be reduced to nothing more than a different way to think about the particles of quantum field theory? Do I add any value to quantum field theory by looking at it this way? Is there even remotely a possibility of coming up with an experiment to verify this idea?

Agemoz

Precursor Field Continuing Work

October 28, 2016

I suspect that groundbreaking work in any field which involves the old saw of 5% inspiration, 95% sweat applies to what I’m doing with the precursor field. It may be a rather big chunk of chutzpah to call my work “groundbreaking”, but it’s definitely creative, and is definitely in the “tedious work out the details” phase. To summarize what I am describing here, I have invented an area of study which I’ve encapsulated with a concept name of the “precursor field”. As discussed in many previous posts, the one-line description of this area of study is “If a single field could bring forth the particle zoo, what would it look like”. For the last bunch of posts, I’ve been working out an acceptable list of assumptions and constraints for this field. Not very exciting, but I’m trying to be thorough and make reasonable conclusions as I work step by step on this. Ultimately I want to derive the math for this field and create a sim or analysis to verify that stable particles resembling the particle zoo will emerge.

Up to now, as discussed in many previous posts, I’ve been able to show that the precursor field cannot be derived from an EM field like DeBroglie and others have done, they failed to come up with a workable solution to enable emergence of stable quantized particles. Thus, there has to be a precursor field from which EM field behavior emerges. I’ve been able to determine that the dimensions of this precursor field has to encompass R3 + I as well as the time dimension. The field must be orientable without magnitude variation, so a thinking model of this field would be a volume of tiny weighted balls. Quantum mechanics theory, in particular, non-causal interference and entanglement, force the precursor field to Fourier decompose to waves that have infinite propagation speed, but particles other than massless bosons must form as group wave clusters. These will move causally because motion results from the rate of phase change of the group wave components, and this rate of phase change is limited (for as yet unknown reasons). The precursor field must allow emergence of quantization of energy by having two connections between field elements–a restoring force to I, and a neighborhood connection to R3. The restoring force causes quantized particles to emerge by only allowing full rotation twists of the precursor field. The neighborhood force would enable group wave confinement to a ring or other topological structures confined to a finite volume, thus causing inertial mass to emerge from a twist in the field.

I’ve left out other derived details, but that should give you a sense of the precursor field analysis I’ve been doing. Lately, I’ve come up with more conclusions. As I said at the beginning–this is kind of tedious at this point, but needs to be thought through as carefully as possible, otherwise the foundation of this attempt to find the precursor field structure could veer wildly off course. I’m reminded of doing a difficult Sudoku puzzle–one minor mistake or assumption early on in the derivation of a solution means that a lot of pointless work will follow that can only, near the end of the puzzle derivation, result in a visible trainwreck. I would really like for my efforts to actually point somewhere in the right direction, so you will see me try to be painstakingly thorough. Even then, I suspect I could be wildly wrong, but it won’t be because I rushed through and took conceptual shortcuts.

OK, let me now point out some new conclusions I’ve recently uncovered about the precursor field.

An essential question is whether the precursor field is continuous or is somehow composed of finite chunks. I realized that the field itself cannot exist in any quantized form–it must be continuous in R3 + I. Thus my previously stated model of a volume of balls is not really accurate unless you assume the balls are infinitely small. I make this conclusion because it appears clear that any field quantization would show up in some variation of a Michelson-Morley experiment, there would be evidence of an ether–and we have no such evidence. I thought maybe the field quantization could be chaotic, e.g, elements are random sized–but then I think the conservation of momentum and charge could not strictly hold throughout the universe. So, the precursor field is continuous, not quantum–thus making the argument that the universe is a computer simulation improbable.

The necessity for twists to allow quantized stable particle formation from a continuous field means that this field is not necessarily differentiable (that is, adjacent infinitesimals may have a finite, non infinitesimal difference in orientation). Quantization has to emerge from the restoring force, but cannot pre-exist in the precursor field.

I realized that the emergence of twists within a volume (necessary to form stable solitons) puts a number of constraints on the connecting force (one of the two connections necessary for the precursor field). First, the connection cannot be physical, otherwise twists cannot exist in this field–twists require a discontinuity region along the axis of the twist. Thus, the connection force must work by momentum transfer rather than direct connection. Another way to put it is there cannot be “rubber bands” between each infinitesimal element. Momentum transfer doesn’t prohibit discontinuities in field orientation, but a physical direct connection would.

Secondly, the neighborhood connection can only work on adjacent infinitesimals. This is different than an EM field, where a single point charge affects both neighborhood and distant regions. EM forces pass through adjacent elements to affect distant elements, but the precursor neighborhood force can’t do that without presupposing another independent field. This discovery was a very nice one because it means the field math is going to be a whole lot easier to work with.

Third, the precursor field must be able to break up a momentum transfer resulting from a neighborhood force. It must be possible that if the action of one infinitesimal induces a neighborhood connection, it must be possible to induce this connection force to more than one neighboring infinitesimal, otherwise the only possible group wave construction would be linear twists (photons). A receiving infinitesimal could get partial twist momenta from more than one adjacent infinitesimal, thus the propagation path of a twist could be influenced by multiple neighbors in such a way to induce a non-linear path such as a ring.

Lastly (for now, anyway!) the restoring force means that sums of momentum transfers must be quantized when applied to another field infinitesimal. I realized it’s possible that a given infinitesimal could get a momentum transfer sum greater than that induced by a single twist. In order for particle energy conservation to work, among many other things, there must be a mechanism for chopping off excess momentum transfer and the restoring connection force provides this. The excess momentum transfer disappears if the sum is not enough to induce a second rotation. I can see from simple geometry that the result will always be a single path, it’s not possible for two twists to suddenly emerge from one. I think if you study this, you will realize this is true, but I can’t do that subject justice here right now. I’ll think about a clear way to describe this in a following post, especially since this work will set the groundwork for the field math.

I’ve come up with more, but this is a good point to stop here for now. You can go back to more interesting silly cat videos now 🙂

Agemoz

Precursor Field and Renormalization

September 25, 2016

As I work out the details of the Precursor Field, I need to explain how this proposal deals with renormalization issues. The Precursor Field attempts to explain why we have a particle zoo, quantization, and quantum entanglement–and has to allow the emergence of force exchange particles for at least the EM and Strong forces. Previous efforts by physics theorists attempted to extend the EM field properties so that quantization could be derived, but these efforts have all failed. It’s my belief that there has to be an underlying “precursor” field that allows stable quantized particles and force exchange particles to form. I’ve been working out what properties this field must have, and one thing has been strikingly apparent–starting with an EM field and extending it cannot possibly work for a whole host of reasons.

As mentioned extensively in previous posts, the fundamental geometry of this precursor field is an orientable 3D+I dimensional vector field. It cannot have magnitude (otherwise E-hv quantization would not be constrained), must allow vector twists (and thus is not finite differentiable ie, not continuous) and must have a preferred orientation in the I direction to force an integral number of twists. Previous posts on this site eke out more properties this field must have, but lately I’ve been focusing on the renormalization problem. There are two connections at play in the proposed precursor field–the twist quantization force, which provides a low-energy state in the I direction, and a twist propagation force. The latter is an element neighborhood force, that is, is the means by which an element interacts with its neighbors.

The problem with any neighborhood force is that any linear interaction will dissipate in strength in a 3D space according to the central force model, and thus mathematically is proportionate to 1/r^2. Any such force will run into infinities that make finding realistic solutions impossible. Traditional quantum field theory works around this successfully by invoking cancelling infinities, renormalizing the computation into a finite range of solutions. This works, but the precursor field has to address infinities more directly. Or perhaps I should say it should. The cool thing is that I discovered it does. Not only that, but the precursor field provides a clean path from the quantized unitary twist model to the emergence of magnetic and electrostatic forces in quantum field theory. This discovery came from the fact that closed loop twists have two sources of twists.

The historical efforts to extend and quantize the EM field is exemplified by the DeBroglie EM wave around a closed loop. The problem here, of course, is that photons (the EM wave component) don’t bend like this, nor does this approach provide a quantization of particle mass. Such a model, if it could produce a particle with a confined momentum of an EM wave, would have no constraint on making a slightly smaller particle with a slightly higher EM wave frequency. Worse, the force that bends the wave would have the renormalization problem–the electrostatic balancing force is a central force proportionate function, and thus has a pole (infinity) at zero radius. This is the final nail in the coffin of trying to use an EM field to form a basis for quantizing particles.
The unitary twist field doesn’t have this problem, because the forces that bend the twist are not central force proportionate. The best way to describe the twist neighborhood connection is as a magnetic flux model. In addition, there are *two* twists in a unitary twist field particle (closed loop of various topologies). There is the quantized vector twist from I to R3 and back again to I, that is, a twist about the propagation axis. And, there is also the twist that results from propagating around the closed loop. Similar to magnetic fields, the curving (normal) force on a twist element is proportionate to the cross-product of the flux change with the twist element propagation direction. My basic calculations show there is a class of closed loop topologies where the two forces cancel each other along a LaGrangian minimum energy path, thus providing a quantized set of solutions (particles). It should be obvious that neither connection force is central force dependent and thus the  renormalization problem disappears.  There should be a large or infinite number of solutions, and the current quest is to see if these solutions match or resemble the particle zoo.

In summary, this latest work shows that the behavior of the precursor field has to be such that central force connections cannot be allowed (and thus forever eliminates the possibility that an EM field can be extended to enable quantization). It also shows how true quantization of particle mass can be achieved, and finally shows how an electrostatic field must emerge given that central force interactions cannot exist at the precursor field level. EM fields must emerge as the result of force exchange particles because it cannot emerge from any central force field, thus validating quantum field theory from a geometrical basis!

I thought that was pretty cool… But I must confess to a certain angst.

Is anybody going to care about these ideas? I know the answer is no. I imagine Feynman (or worse, Bohr) looking over my shoulder and (perhaps kindly or not) saying what the heck are you wasting your time for. Go study real physics that produces real results. This speculative crap isn’t worth the time of day. Why do I bother! I know that extraordinary claims require extraordinary proof–extraordinary in either experimental verification or deductive proof. Neither option, as far as I have been able to think, is within my reach. But until I can produce something, these ideas amount to absolutely nothing.

I suppose one positive outcome is personal–I’ve learned a lot and entertained myself plus perhaps a few readers on the possibility of how things might work. I’ve passed time contemplating the universe, which I think is unarguably a better way to spend a human life than watching the latest garbage on youtube or TV. Maybe I’ve spurred one person out there to think about our existence in a different way.

Or, perhaps more pessimistically, I’m just a crackpot. The lesson of the Man of La Mancha is about truly understanding just who and what you are, and reaching for the impossible star can doing something important to your character. I like the image that perhaps I’m an explorer of human existence, even if perhaps not a very good one–and willing to share my adventures with any of you who choose to follow along.

Agemoz

Precursor Field Constraints

August 31, 2016

I’m continuing to work through details on the Precursor Field, so called because it is the foundation for emergent concepts such as quantized particles and the EM field/Strong force. I mentioned previously that this field has a number of constraints that will help define what it is. Here is what I had from previous work: the precursor field must be unitary to satisfy the quantization implied by E=hv (no magnitude degree of freedom possible). It must be orientable to R3 + I, that is, SO(4) to allow field twists, which are necessary for particle formation under this theory. It must have a preferred background orientation state in the I direction to enable particle quantization. Rotations must complete a twist to the background state, no intermediate stopping point in rotation–this quantizes the twist and hence the resulting particle. This field must not necessarily be differentiable (to enable twists required for particle formation). There must be two types of field connections which I am calling forces in this field–field elements must have a lowest energy direction in the imaginary axis, such that there is a force that will rotate the field element in that direction. Secondly, it must have a neighborhood force whenever the field element changes its own rotation. I’ll call the first force the restoring force, and the second force the neighborhood force.

These constraints all result from a basic set of axioms resulting from the Twist Theory’s assumption that a precursor field is needed to form quantized stable particles (solitons).

Since then, I’ve uncovered more necessary constraints having to do with the two precursor field forces. Conservation of energy means that there cannot be any damping effect, which has the consequence that the twist cannot spread out. The only way this can occur is if the quantized twist propagates at the speed of light. This introduces a whole new set of constraints on the geometry of twists. I’m postulating that photons are linear twists which will reside on the light cone of Minkowski space, and that all other particles are closed loops. A closed loop on Minkowski space must also lie on a light cone for each delta on its twist path, which means that the closed loop as a whole cannot reach the speed of light. This can easily be seen because closed loops must have a spacelike component as well as a timelike component such that the sum of squares lies on the twist path elements light cone. This limits the timelike component to less than the speed of light (the delta path element has to end up inside the light cone, not on it).

One interesting side consequence is that a particle like the electron cannot be pointlike. The current collider experiments appear to show it is pointlike, but this should be impossible both because the Heisenberg uncertainty relation would imply an infinite energy to a pointlike particle but also because if an electron cannot be accelerated to exactly the speed of light, this forces its internal composition to have a spacelike component and thus cannot be pointlike. Ignoring my scientific responsibility to be skeptical (for example, another explanation would be massive particles are forced to interact within an EM field via exchange particles, thus slowing it down for reasons independent of the particle’s size–but if this were true, why doesn’t this also apply to photons), I have a strong instinct that says this confirms my hypothesis that particles other than the photon are closed loops with a physical size. This also makes sense since mass would then be associated with physical size since closed loops confine particle twist momentum to a finite volume, whereas a photon distributes its momentum over an infinite distance and thus has zero mass. Since collision scattering angles implies a point size, the standard interpretation is to assume that the electron is pointlike–but I think there may be another explanation that collider acceleration distorts the actual closed loop of the electron to approach a line (pointlike cross section).

Anyway, to get back on topic, my big focus is on how to precisely define the two forces required by the precursor field. I realized that the restoring force is the much harder force to describe–the neighborhood force merely has to translate the field elements change of rotation to a neighborhoods change of rotation such that the sum of all neighborhood force changes equals the elements neighborhood force. This gives a natural rise to a central force distribution and is easy to calculate.

The restoring force is harder. As I mentioned, conservation of energy requires that it cannot just dissipate into the field, and a quantum particle must consist of exactly one twist (otherwise the geometrical quantization would permit two or more particles). I’m thinking this means that a change in rotation due to the restoring force must be confined to a delta function and that the rotation twist must propagate at the speed of light, whether linearly (photons) or in a closed loop (massive particles). I suspect we can’t think of the restoring force as an actual force, but then how to describe it as a field property? I’ll have to do more thinking on this…

Agemoz

Quantizing Fields–Twist Field vs. Semiclassical and Canonical Field Quantization

August 28, 2016

I’ve done all this work/discussion here about this unitary twist field scheme and how it uses quantized rotations to a background imaginary axis. While my primary intent is for my benefit (keep track of where I am and to organize my thinking) I’ve tried to make it readable and clear for any readers that happen to be following my efforts. I try to be lucid (and not too crack-potteryish) so others could follow this if they wanted to. To be sure, my work/discussion on the unitary twist field is very speculative, a guess on why we have the particle zoo. However one big thought has been running through my head–if any of you are following this, you would be forgiven for wondering why I’m doing this field quantization work given that there is already plenty of well established work on first and second quantization of fields such as the EM field.

This is going to be a very tough but valid question to elaborate on. Let me start with a synopsis: my work on this precursor field, and quantum mechanics/field theory work are operating on very different subjects with the unfortunate common concept name of quantization. Quantum theory uses quantization to derive the wavelike behavior of particles interacting with other particles and fields. Unitary Twist Field theory uses a different form of quantization to help define an underlying basis field from which stable/semistable particles and fields (such as the EM field) can form.

Let me see if I get the overall picture right, and describe it in a hopefully not too stupidly wrong way.

Both quantum theory and my Unitary Twist Field work reference quantization as a means to derive a discrete subset of solutions concerning fields and particles from an infinite set of possible system solutions. Quantum theory (mechanics, field theory) derive how particles interact, and quantization plays a big part in constraining the set of valid interaction solutions. Unitary Twist Field theory (my work) involves finding a field and its properties that could form the particles and field behavior we see–an underlying field that forms a common basis for the particles and the interactions we see in real life. Quantum theory and the Standard Model currently provide no clear way to derive why particles have the masses and properties that they do, Unitary Twist Theory attempts to do that by defining a precursor basis field that creates solitons for both the stable/semistable particles and force exchange particles required by the Standard Model and quantum theory.

Standard Model particle/field interactions in quantum mechanics (first quantization) is a semiclassical treatment that adds quantization to particles acting in a classical field. Quantization here means extending the classical equations of motion to include particle wavelike behavior such as interference. Second quantization (either canonical or via path integrals, referred to generally as quantum field theory) extends quantization to fields by allowing the fields to spontaneously create and annihilate particles, virtual particles, exchange particles, fields, etc–it’s a system where every force is mediated by particles interacting with other particles. This system of deriving solutions gets generalization extension via gauge invariance constraints, this work gave rise to antiparticles and the Higgs Boson. Quantization here means that particle/field interactions interfere like waves, and thus there is generally a discrete set of solutions with a basis that could be called modes or eigenstates (for example quantized standing waves in electron orbitals about an atom).

The quantization I am using as part of the defining of the Unitary Twist Field is a completely different issue. I’ve done enough study to realize that the EM field cannot be a basis for forming particles, even by clever modification. Many smart minds (DeBroglie, Compton, Bohr, etc) have tried to do that but it cannot be done as far as anyone has been able to determine. I think you have to start with an underlying field from which both particles and the EM field could emerge, and it has to be substantially different than the EM field in a number of ways. I’ve elaborated on this in extensive detail in previous posts, but in a nutshell, quantization here means a orientable, unitary, 3D + I (same as the quantum oscillaor) field that has a preferred lowest energy direction to the positive imaginary axis. This field should produce a constrained set of stable or semistable solitons. If all goes well and this is a good model for reality, these soliton solutions should then match the particle zoo set and exhibit behavior that matches the EM field interactions with particles described in quantum theory and the Standard Model.

I am attempting to keep in mind that a twist field theory also has to be gauge invariant at the particle level, and has to be able to absorb quantum theory and the Standard Model. That’s to be done after I first determine the viability of the unitary twist field in producing a set of particles matching the known particle zoo. This is a truly enormous endeavor for one not terribly smart fellow, so just one step at a time…

Don’t know if that makes things clearer for readers, it does help narrow down and add clarity in my own mind of what I’m trying to do.

Agemoz

More Details on the Precursor Field

August 25, 2016

I’m getting ready to start some detailed analysis work on the proposed precursor field. This effort is intended to show how the quantized particle zoo and the EM and strong forces could emerge given a field with an underlying (“precursor”) set of properties I’ve worked out in previous posts. I am taking the liberty of using this post as a placekeeper for keeping track of the details–this might help a reader understand better what I’m proposing but this particular post is not really intended to be especially profound. If it gets freshly pressed, that would be funny in an ironic way!

This precursor field, as described in previous posts, has unitary magnitude and rotates in R3 + I, or 4 dimensions. This will map to a rotation group (SO(4)) and will embed two types of field connections. I think of the connections as forces, although forces actually are a particle concept (ignoring general relativity for now) and technically this word probably shouldn’t be used here. There’s a semantic issue here which right now I want to ignore as I try to prove the concept, so I’m going to use the word force here to describe the required connections.

The necessity for these two connections is described in previous posts and consist of the quantizing force and the rotation force. The first is a force that attempts to restore an element of the field to the imaginary dimension. It has no effect on neighborhood elements. The second is a true connection from one element rotation velocity to neighborhood element rotation states. I will experiment with various specific functions for each of these forces, but will start with some simple guesses. For the quantizing force, I will use a linear restoring force (to the I dimension) that gets stronger as the angle from the imaginary axis increases.

The rotation force is tricky. It is tempting to use a central force (1/r^2) where the rotation velocity of an element will cause a proportionate weighted delta rotation to neighborhood elements, dropping as 1/r^2. This force must be normalized to a finite value at zero–but 1/r^2 has a pole there, that won’t work. A workable solution that avoids renormalization would be to use a Gaussian, but doesn’t have as good a physical justification.

The central force approach can easily be justified as linearly proportional to the number of elements present at the function’s radius, which grows as r^2 in the R3 space. (Dont let the I dimension fool you–that is only a direction dimension. The real part, which is the only part that the radius value r is dependent on, is what determines the magnitude of the rotation force). Nevertheless, right now I see no way to use this because of the pole at zero, so I will just take the gaussian as a guess for a function that is finite at zero r and declines to zero at infinity. If this guess yields the expected stable particle zoo or something resembling it, then work to exactly derive the rotation force function will need to be done.

There you have it–that is a mathematical definition of the Precursor Field that should yield a particle zoo and the EM and Strong force interactions. I’m setting up a sim and some analysis to see what this construct will yield. I’ve yakked for a long time why this twist field thing makes sense, now it’s time to fish or cut bait…

Agemoz

PS, note that I’m ignoring quantum wave functions for right now and treating the precursor field elements as actual physical states. If the concept pans out, the math will have to be generalized to composite states (wave functions). It will also be necessary to generalize to relativistic speeds. It’s my guess that neither of these are necessary to explain the particle zoo, although once shown, refinement for quantitative analysis would then have to be done.

Basis Field–NYAEMFT (Not Yet Another EM Field Theory)

July 19, 2016

If you’ve been following along in my effort to work out details of the Unitary Twist field, you will have seen the evolution of the concept from an original EM field theory to something that might be described as a precursor field that enables quantized sub-atomic particles, Maxwell’s field equations, relativity, and other things to emerge .  I’ve worked out quite a few contraints and corollaries describing this field–but I need to make it really clear what this field is not.  It cannot be an EM field.

My sidebar on this site calls it an EM field but now is the time to change that, because to achieve the goal of enabling the various properties/particles I list above, this field has to be clearly specified as different from an EM field.  Throughout physics history there have been efforts to extend the EM field description to enable quantization, General Relativity, and the formation of the particle zoo.  For a long time I had thought to attempt to modify the Maxwell’s field equations to achieve these, but the more I worked on the details, the more I realized I was going at it the wrong way.

The precursor field (which I still call the unitary twist field)  does allow EM field relations to emerge, but it is definitely not an EM field.  EM fields cannot sustain a quantized particle, among other things.  While the required precursor field has many similarities to an EM field that tempt investigators to find a connection, over time many smart people have attempted to modify it without success.

I now know that I must start with what I know the precursor field has to be, and at some point then show how Maxwell’s field equations can arise from that.

First, it can readily be shown that quantization in the form of E=hv forces the precursor field to have no magnitude component.  Removing the magnitude component allows a field structure to be solely dependent on frequency to obtain the structure’s energy.   This right here is why EM fields already are a poor candidate to start from.   It took some thinking but eventually I realized that the precursor field could be achieved with a composition of a sea of orientable infintesimal “balls” in a plane (actually a 3D volume, but visualizing as a 2D plane may be helpful).

The field has to have 3 spatial dimensions and 1 imaginary dimension that doesn’t point in a spatial direction (not counting time).  You’ll recognize this space as already established in quantum particle mechanics–propagators have an intrinsic e^i theta (wt – kx) for computing the complex evolution of composite states in this 3D space with an imaginary component, so I’m not inventing anything new here.  Or look at the photon as it oscillates between the real and imaginary (magnetic) field values.

Quantization can readily be mapped to a vector field that permits only an integer number of field rotations, easy to assign to this precursor field–give the field a preferred (lower energy) orientation in the imaginary direction called a default or background state.  Now individual twists must do complete cycles–they must must turn all the way around to the default orientation and no more.  Partial twists can occur but must fall back to the default orientation , thus allowing integration of quantum evolution over time to ultimately cause these pseudo-particles to vanish and contribute no net energy to the system.  This shows up in the computation of virtual particles in quantum field theory and the emergence of the background zero-point energy field.

Because of this quantized twist requirement, it is now possible to form stable particles, which unlike linear photons, are closed loop twists–rings and knots and interlocked rings.  This confines the momentum of the twist into a finite area and is what gives the particle inertia and mass.  What the connection is to the Higg’s field, I candidly admit I don’t know.  I’m just taking the path of what I see the precursor field must be, and certainly have not begun to work out derivations to all parts of the Standard Model.

The particle zoo then results from the tree of possible stable or semi-stable twist topologies.   Straight line twists are postulated to be photons, rings are electrons/positrons differentiated by the axial and radial spins, quark combinations are interlocked rings where I speculate that the strong force results from attempting to pull out an interlocked ring from another.  In that case, the quarks can pull apart easily until the rings start to try to cross, then substantial repulsion marks the emergence of the asymptotic strong force.

Quantum entanglement, speed of light, and interference behavior results from the particle’s group wave characteristics–wave phase is constant and instantly set across all distance, but particles are group wave constructions that can only move by changing relative phase of a Fourier composition of waves.  This geometry easily demonstrates behavior such as the two-slit experiment or Aharonov’s electron.  The rate of change of phase is limited, causing the speed of light limit to emerge.  What limits this rate of change?  I don’t know at this point.

All this has been extensively documented in the 168 previous posts on this blog.  As some point soon I plan to put this all in a better organized book to make it easier to see what I am proposing.

However, I felt the need to post here, the precursor field I call the Unitary Twist Field is *not* an EM field, and really isn’t a modified or quantized EM field.  All those efforts to make the EM field create particles, starting with de Broglie (waves around a ring), Compton, Bohm, pilot wave, etc etc just simply don’t work.  I’ve realized over the years that you can’t start with an EM field and try to quantize it.  The precursor field I’m taking the liberty of calling the Unitary Twist Field has to be the starting point if there is one.

Agemoz

Basis Field For Particles

July 16, 2016

I think every physicist, whether real or amateur or crackpot, goes through the exercise of trying to work out a geometry for the field that particles reside in.  This is the heart of many issues, such as why is there a particle zoo and how to reconcile quantum theory with relativity, either special or general.  There are many ways to approach this question–experimental observation, mathematical derivation/generalization, geometrical inference, random guessing–all followed by some attempt to verify any resulting hypothesis. I’ve attempted to do some geometrical inference to work out some ideas as to what this field would have to be.

Ideas are a dime-a-dozen, so throwing something out there and expecting the world to take notice isn’t going to accomplish anything.  It’s primarily the verification phase that should advance the block of knowledge we call science.  This verification phase can be experimental observation such as from a collider, mathematical derivation or proof, or possibly a thorough computer simulation.  This system of growing our knowledge has a drawback–absolute refusal to accept speculative ideas which are difficult or impossible to verify (for example, in journals) can lock out progress and inhibit innovation.  Science investigation can get hide-bound, that is stuck in a loop where an idea has to have ultimate proof, but ultimate proof has become impossible, so no progress is made.

This is where the courageous amateur has some value to science, I think–they can investigate speculative possibilities–innovate–and disseminate the investigation via something like a blog that nobody reads.  The hope is that pursuing speculative ideas will eventually reach a conclusion or path for experimental observation that verifies the original hypothesis.  Unlike professional scientists, there are no constraints on how stupid or uninformed the amateur scientist is and no documentation or credentials that says that science can trust him.  The signal-to-noise is going to be so high that it’s not worth the effort to understand or verify the amateur.  The net result is that no progress in our knowledge base occurs–professional scientists are stuck as publishable ideas and proof/verification become more and more difficult to achieve, but no one wants to bother with the guesses of an amateur.  I think the only way out is for an amateur to use his freedom to explore and publish as conscientiously as he can, and for professionals to occasionally scan amateur efforts for possible diamonds in the rough.

OK, back to the title concept.  I’ve been doing a lot of thinking on the field of our existence.  I posted previously that a non-compressible field yields a Maxwell’s equation environment which must have three spatial dimensions, and that time is a property, not a field dimension as implied by special relativity.  I’ve done a lot more thinking to try to pin down more details.  My constraints are driven primarily by the assumption that this field arose from nothing (no guiding intelligence), which is another way of saying that there cannot be a pre-existing rule or geometry.  In other words, to use a famous aphorism, it cannot be turtles all the way down–the first turtle must have arisen from nothing.

I see some intermediate turtles–an incompressible field would form twist relations that Maxwell’s equations describe, and would also force the emergence of three spatial dimensions.  But this thinking runs into the parity problem–why does the twist obey the right hand rule and not the left hand rule?  There’s a symmetry breaking happening here that would require the field to have a symmetric partner that we don’t observe.  I dont really want to complexify the field, for example to give it two layers to explain this symmetry breaking because that violates, or at least, goes in the wrong direction, of assuming a something emerged from nothing.

So, to help get a handle on what this field would have to be, I’ve done some digging in to the constraints this field would have.  I realized that to form particles, it would have to be a directional field without magnitude.  I use the example of the car seat cover that is made of orientable balls.  There’s no magnitude (assuming the balls are infinitely small in the field) but are orientable.  This is the basic structure of the Twist Field theory I’ve posted a lot about–this system gives us an analogous Schroedinger Equation basis for forming subatomic particles from twists in the field.

For a long time I thought this field had to be continuous and differentiable, but this contradicts Twist Theory which requires a discontinuity along the axis of the twist.  Now I’ve realize our basis field does not need to be differentiable and can have discontinuities–obviously not magnitude discontinuities but discontinuities in element orientation.  Think of the balls in the car seat mat–there is no connection between adjacent ball orientations.  It only looks continuous because forces that change element orientation act diffusely, typically with a 1/r^2 distribution.  Once I arrived at this conclusion that the field is not constrained by differentiability, I realized that one of the big objections to Twist Field theory was gone–and, more importantly, the connection of this field to emergence from nothing was stronger.  Why?  Because I eliminated a required connection between elements (“balls”), which was causing me a lot of indigestion.  I couldn’t see how that connection could exist without adding an arbitrary (did not arise from nothing) rule.

So, removing differentiability brings us that much closer to the bottom turtle.  Other constraints that have to exist are non-causality–quantum entanglement forces this.  The emergence of the speed of light comes from the fact that wave phase propagates infinitely fast in this field, but particles are group wave constructions.  Interference effects between waves are instantaneous (non-causal) but moving a particle requires *changing* the phase of waves in the group wave, and there is a limit to how fast this can be done.  Why?  I don’t have an idea how to answer this yet, but this is a good geometrical explanation for quantum entanglement that preserves relativistic causality for particles.

In order to quantize this field, it is sufficient to create the default orientation (this is required by Twist Field theory to enable emergence of the particle zoo).  I have determined that this field has orientation possible in three spatial dimensions and one imaginary direction.  This imaginary direction has to have a lower energy state than twists in the spatial dimension, thus quantizing local twisting to either no twists or one full rotation.  A partial twist will fall back to the default twist orientation unless there’s enough energy to complete the rotation.  This has the corollary that partial twists can be computed as virtual particles of quantum field theory that vanish when integrating over time.

The danger to avoid in quantizing the field this way is the same problem that a differentiable constraint would require.  I have to be careful not to create a new rule regarding the connectivity of adjacent elements.  It does appear to work here, note that the quantization is only for a particular element and requires no connection to adjacent elements.  The appearance of a connection as elements proceed through the twist is indirect, driven by forces other than some adjacent rubber-band between elements.  These are forces acting continuously on all elements in the region of the twist, and each twist element is acting independently only to the quantization force.   The twist discontinuity doesn’t ruin things because there is no connection to adjacent elements.

However, my thinking here is by no means complete–this default orientation to the imaginary direction, and the force that it implies, is a new field rule.  Where does this energy come from, what exactly is the connection between elements that enforces this default state?

 

Oh, this is long.  Congratulations on anyone who read this far–I like to think you are advancing science in considering my speculation!

Agemoz

Mathematical Basis for Twist Theory

September 28, 2015

The field twist theory I’ve been working on is designed to provide a geometrical basis for the particle zoo as well as provide a non-bizarro explanation of quantum entanglement.  I’ve had a bit of a breakthrough thinking that provides a mathematical foundation for the theory.

The theory posits that particles arise from electromagnetic fields (there, I said it, I’ve lost 95% of you already!).  For that to be a tenable hypothesis, I have to modify Maxwell’s equations to provide quantization.  A preposterous proposition since that has already been done successfully and particles predicted with the renormalizable Yang-Mills gauge invariant extension/generalization of Maxwell’s equations and the Lorentz force equations.

The problem is that half of Maxwell’s equations, the particle terms, are empirical.  According to my studies, there is currently no known means, not even the Higg’s field, for explaining why the masses are what they are.  The twist field theory attempts to derive the particle zoo by positing a variation of Maxwell’s field equations that replaces the particle terms.  Geometrically, quantization can be mapped to a rotation of a field vector where there is a preferential background state, that is, there is a potential to go to a background ground state.  For this to be achievable using Maxwell’s equations and maintain gauge invariance, there is only one possible such state–the imaginary vector of the EM field.  A quantized packet of energy would require a specific energy to complete one and only one rotation–a twist–to this background state.  The remaining issue is field dissipation–there is only one way that a twist rotation would not dissipate.  It must move axially at the speed of light and must not have a diffuse axial radius.

Once these criteria are met, it is possible to construct a variety of rings and knots and links that should give rise to the particle zoo and the required masses.  The simplest non-linear case is a ring, which has counteracting magnetic field interactions to quantize the loop size (the twist provides one term, the loop itself provides the counteracting term).  As I mentioned, this can all be achieved by replacing the particle terms in Maxwell’s equations with a potential to the imaginary background state.  Such a modification could answer the question of “if this is a valid modification to Maxwell’s equations, why hasn’t it been experimentally observed” because there is no ability to create a sensor made of particles capable of directly observing this background state.  It is this background state potential that shows up when E=hv is measured.  The requirement that the twist axis diameter be non-diffuse would be the explanation for why elementary particles such as the electron are showing zero radius within observable limits.

Interesting investigation for me–I suppose science fiction for the vast majority of you!  But that’s fine–I never said I was doing any great, just some interesting thinking with the studies I’ve done.

Agemoz

22 Years!

September 9, 2015

It’s been 22 years since I started as an amateur crackpot, and have nothing more to show for it except that I’m still an amateur crackpot.  However, I did reach the goal of a better understanding of the physics behind the particle zoo and the history of physics.  I still think that my basic premise could work to produce the array of particles and force mediators we know to exist.  The idea is analogous to the Schroedinger wave solutions for excited electrons and is based on the assumption that at quantum scales there is a way (other than gravity) to curve EM waves.  We already know that this outcome cannot result from Maxwell’s equations alone, so I have proposed that EM field twists can occur.  These could be considered strings and consist of an axially rotating field vector that propagates only at speed c.  If the axis is a straight line, we have a photon that cannot rest and has no rest mass.  However, a twist that forms in a closed loop must only exist in quantized structures (any point on the loop must have a continuous vector twist rotation, so only complete rotations are possible).  Loops can exist as a simple ring or more complex knots and linked knots and would provide the basis for a particle zoo.  The loop has two counteracting magnetic fields that curve and confine the loop path, thus enabling the soliton formation of a stable particle–the twist about the axis of the twist, and the rotation of the twist about the center of the loop. Mass results from the momentum of the twist loop being confined to a finite volume, inferring inertia, and electric charge, depending on the loop configuration, results from the distribution of  magnetic fields from the closed loop.  Linked loops posit the strong force assembly of quarks.

The biggest objection to such a twist model (aside from assuming an unobserved variation of Maxwell’s equations that enables such a twist field) is the resulting quantized size of particles.  Electrons have no observed dimensional size, but this model assumes they result from twist rings that are far larger than measurements indicate.  I have to make another assumption to get around this–that collisions or deflections are the result of hitting the infinitely small twist ring axis, not the area of the ring itself.  Indeed, this assumption helps understand why one and only one particle can capture a linear twist photon–if the electron were truly infinitely small, the probability of snagging a far larger (say, infrared) photon is vanishingly small, contrary to experiment (QFT posits that the electron is surrounded by particle/antiparticle pairs that does the snagging, but this doesn’t answer the question of why only one electron in a group will ever capture the photon).

In order for this twist theory to work, another assumption has to be made.  Something needs to quantize the frequency of axial twists, otherwise linear twists will not quantize like loops will.  In addition, without an additional constraint, there would be a continuous range of closed loop energies, which we know experimentally does not happen.  In order to quantize a photon energy to a particular twist energy, I posit that there is a background state direction for the twist vector orientation.  In this way, the twist can only start and finish from this background state, thus quantizing the rotation to multiples of 2 pi (a complete rotation).  This assumption leads to the conclusion that this background state vector must be imaginary, since a real background state would violate gauge invariance among many other things and probably would be detectable with some variation of a Michelson-Morley experiment (detecting presence of an ether, or in this case an ether direction).  We already describe quantum objects as wave equations with a 3D real part and an imaginary part, so this assumption is not wildly crack-potty.

So in summary, this twist field theory proposes modifying the EM field math to allow axial twists in a background state.  Once this is done, quantized particle formation becomes possible and a particle zoo results.  I’ve been working hard on a simulator to see what particle types would emerge from such an environment.

One remaining question is how does quantum entanglement and the non-causal decoherence process get explained?  I propose that particles are group waves whose phase instantly affects the entire wave path.  The concept of time and distance and maximum speed c all arise from a limit on how fast the wave phase components can change relative to each other, analogous to Fourier composition of delta functions.

You will notice I religiously avoid trying to add dimensions such as the rolled up dimensions of various string theories and multiple universes and other such theories.  I see no evidence to support additional dimensions–I think over time if there were other dimensions connected to our 3D + T, we would have seen observable evidence, such as viruses hiding in those dimensions or loss of conservation of some quantities of nature.  Obviously that’s no proof, but KISS to me means that extra dimensions are a contrivance.  My twist field approach seems a lot more plausable, but I may be biased… 🙂

Agemoz